مطالعه‌ی رفتار الکترو‌ترمو‌مکانیکی پوسته‌های پیزوالکتریک با استفاده از تحلیل هم‌هندسه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری / دانشکده مهندسی، دانشگاه فردوسی مشهد

2 عضو هیات علمی / دانشکده مهندسی، دانشگاه فردوسی مشهد

چکیده

در این پژوهش با استفاده از تحلیل هم‌هندسه رفتار الکترومکانیکی پوسته‌های کامپوزیتی پیزوالکتریک بررسی شده است. روش‌های تولید شکل‌های هندسی مانند نربز و اسپلاین‌ها، اساس روش تحلیل هم‌هندسه است. در روش هم‌هندسه، برخلاف روش اجزای محدود، برای تولید مدل محاسباتی و نیز تقریب فضای حل از توابع پایه یکسان استفاده می‌شود. در این مقاله برای تحلیل سازة پوسته‌ای کامپوزیتی از نظریة تغییر شکل برشی مرتبة اول میندلین رایزنر استفاده شده ‌است که در آن هر نقطة کنترلی دارای پنج درجه آزادی، شامل سه درجه آزادی تغییر مکانی و دو درجه آزادی چرخشی، است. برای مدلسازی میدان الکتریکی تغییرات پتانسیل الکتریکی در راستای ضخامت لایه‌های پیزوالکتریک خطی فرض شده ‌است. کار انجام‌شده با حل چند مثال مختلف معتبرسازی شده ‌است. برای پوستة بام اسکوردلیس‌لو مقدار جابه‌جایی در نقطة میانی لبة آزاد با خطای 0/066 درصد از مقدار دقیق آن و برای پوستة یک‌سر گیر‌دار بیشترین مقدار خطا در جابه‌جایی نقطة میانی لبة آزاد آن، 0/039 درصد، به‌دست آمده است. در مثال‌های بعد، هدف رسیدن به تغییر شکل دلخواه پوسته با اعمال ولتاژ است. نخست، با افزایش ولتاژ اعمالی به یک پوستة چندلایه، تحت بار گسترده، تغییر شکل برون‌صفحه‌ای آن صفر شده است. سپس برای بررسی کنترل اعوجاج گرمایی، پوسته‌های کامپوزیتی متقارن و پادمتقارن در معرض گرادیان دما قرار گرفته‌اند. با اعمال ولتاژ با قطبیت‌های یکسان یا مخالف، پیچش یا خمش حرارتی یا هر دو در پوسته جبران شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An investigation on the thermos-electromechanical behavior of smart shells using isogeometric analysis

نویسندگان [English]

  • Zahra Ghadimi 1
  • Behrooz Hassani 2
چکیده [English]

In this paper, the thermos-electro mechanical behavior of piezoelectric laminate shell has been studied by isogeometric analysis. Isogeometric analysis (IGA) is based on geometry generation technique, such as nurbs and splines. In Isogeometric analysis, same basis functions employed for geometry and approximation of the unknown field, unlike finite element method. In this paper, the analysis of composite shell structure is based on first-order shear deformation theory (Mindlin-Reissner), therefore each control point has five degrees of freedom, three displacement degrees of freedom and two rotations. For modeling of the electric field, we assume the variation of electric potential is linear through the thickness of piezo electric layers. The current work is validated though solving typical examples. For the Scordelis-Lo-Roof, maximum error is 0.066% that take place at the midpoint of free edge and for clamped shell maximum error is 0.039%. In other case studies, the goal is to achieve desired shape deformation by applying voltage. First by increasing the voltage on laminate shell under uniform load, the out of plane deformation has been eliminate. In continue, for control of thermal distortion, the symmetric and antisymmetric composite shell exposed to temperature gradient. By applying the voltage with same or opposite polarity, thermal twist or thermal bending has been compensated.

کلیدواژه‌ها [English]

  • Isogeometric Analysis
  • shell
  • composite material
  • piezo electric
  • temperature gradient

[1] T. J. R. Hughes, J. A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng. Vol. 194, pp. 4135–4195, 2005.

[2] M. C. Hsu, I. Akkerman & Y. Bazilevs, High-performance computing of wind turbine aerodynamics using isogeometric analysis, Computers & Fluids, Vol. 49, No.1, pp. 93-100, 2011.

[3] D. Anders, K. Weinberg, R. Reichardt, Isogeometric analysis of thermal diffusion in binary blends, Computational Materials Science, Vol. 52, No. 1, pp. 182-188, 2012.

[4] Y. Bazilevs, V. M. Calo, J. A. Cottrell, J. A. Evans, T. J. R. Hughes, S. Lipton & T. Sederberg, Isogeometric analysis using T-splines, Computer Methodsin Applied Mechanics and Engineering, Vol. 199, No. 5, pp. 229-263, 2010.

[5] Y. Bazilevs, M. C. Hsu & M. A. Scott, Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines, Computer Methods in Applied Mechanics and Engineering, Vol. 249, pp. 28-41, 2012.

[6] M. Cuomo, L. Contrafatto, L. A. Greco, variational model based on isogeometric interpolation for the analysis of cracked bodies, International Journal of Engineering Science, Vol. 80, pp. 173-188, 2014.

[7] J. Kiendl, K. U. Bletzinger, J. Linhard & R. Wüchner, Isogeometric shell analysis with Kirchhoff–Love elements, Computer Methods in Applied Mechanics and Engineering, Vol. 198, No. 49, pp. 3902-3914, 2009.

[8] N. Nguyen-Thanh, J. Kiendl, H. Nguyen-Xuan, R. Wüchner, K. U. Bletzinger, Y. Bazilevs & T. Rabczuk, Rotation free isogeometric thin shell analysis using PHT-splines, Computer Methods in Applied Mechanics and Engineering, Vol. 200, No. 47, pp. 3410-3424, 2011.

[9] D. J. Benson, Y. Bazilevs, M. C. Hsu & T. J. R. Hughes, Isogeometric shell analysis: the Reissner–Mindlin shell, Computer Methods in Applied Mechanics an Engineering, Vol. 199, No. 5, pp. 276-289, 2010.

[10] S. Hosseini, J. J. Remmers, C. V. Verhoosel & R Borst, An isogeometric solid-like shell element for nonlinear analysis, International Journal for Numerical Methods in Engineering, Vol. 95, No. 3, pp. 238-256, 2013.

[11] J. M. Kiendl, Isogeometric analysis and shape optimal design of shell structures, PhD thesis, Technische universität münchen, 2011.

[12] B. Hassani, S. M. Tavakkoli, & H. Ghasemnejad, Simultaneous shape and topology optimization of shell structures, Structural and Multidisciplinary Optimization, Vol. 48, No. 1, pp. 221-233, 2013.

[13] S. M. Tavakkoli, B. Hassani & H. Ghasemnejad, Isogeometric topology Optimization of Structures by using mma, Int. J. Optim. Civil Eng, Vol. 3, No. 2, pp. 313-326, 2013.

[14] S. K. Ha, C. Keilers, F. K. Chang, Finite element analysis of composite structures containing distributed piezoceramic sensors and actuators, American Institute of Aeronautics and Astronautics Journal, Vol. 3, No. 3, pp. 772–780, 1992.

[15] W. S. Hwang, H. C. Park, Finite element modelling of piezoelectric sensors and actuators AIAA J, Vol. 31, pp. 930-937, 1993.

[16] H. S. Tzou, R. Ye, Analysis of piezoelectric structures with laminated piezoelectric triangular shell elements, American Institute of Aeronautics and Astronautics Journal, Vol. 34, No. 1, pp. 110-115 1996.

[17] A. Benjeddou, Advances in piezoelectric finite element modeling of adaptive structural elements: a survey, Computers and Structures, Vol. 76, pp. 347-363, 2000.

[18] S. Lee, N. S. Goo, H. C. Park, K. J. Yoon, C. Cho, A nine-node assumed strain shell element for analysis of a coupled electro-mechanical system, Smart Mater. Struct, Vol. 12, pp. 355-362, 2003.

[19] V. Balamurugan, S. Narayanan, Shell finite element for smart piezoelectric composite plate/shell structures and its application to the study of active vibration control, Finite Elem. Anal. Des. Vol. 37, pp. 713-38, 2001.

[20] E. F. Crawley, K. B Lazarus, Induced strain actuation of isotropic and anisotropic plates.  AIAA J, Vol. 29, pp. 944-51, 1991.

[21] H. Kioua, S. Mirza, Piezoelectric induced bending and twisting of laminated composite shallow shells, Smart Mater. Struct, Vol. 9, pp. 476-484, 2000.

[22] S. N. Atluri, S. Shen, The Meshless Local Petrov-Galerkin (MLPG) Method, Tech Science Press, USA. Fifth edition, Volume 2: Solid Mechanics, 2002.

[23] O. C. Zienkiewicz, The Finite Element Method, Fifth edition published by Butterworth-Heinemann. 2000.

[24] H. J. Lee, D. A. Saravanos, Generalized Finite Element Formulation for Smart Multilayered Thermal Piezoelectric Composite Plate, International Journal of Solids and Structures, Vol. 34, No. 26, pp. 3355-3371, 1997.