معماری بهینه سازه پهپاد بال لامبدا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک اشتر، اصفهان

2 دانشجوی دکتری / مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک اشتر، اصفهان

3 فارغ التحصیل دکتری مهندسی هوافضا / دانشکده هوافضا، دانشگاه صنعتی شریف

چکیده

معماری بهینه سازه پهپادهای بال لامبدا (پهبال) در فاز طراحی مفهومی، به دلیل پیکربندی نامتعارف و نداشتن اطلاعات تجربی منتشر شده از این نوع هواپیماها، به یک چالش مهم تبدیل شده است. این مقاله با هدف توسعه‌ی یک روش جدید، برای طراحی معماری سازه هواپیماهای نظامی نامتعارف نسل جدید؛ به ویژه برای پهبال‌ها تهیه شده است. در این روش، ابتدا به بررسی پارامترهای موثر بر روی معماری سازه این نوع هواپیماها پرداخته شده و سپس برای ارائه یک متدولوژی کلی برای معماری سازه، به بررسی رفتار هندسی نامتعارف این پرنده‌ها با کمک تحلیل مودال پرداخته می‌شود. نتیجه این تحلیل مودال، تقسیم هندسه هواپیما به زیر بخش‌های معمولی؛ با معماری‌های شناخته شده کلاسیک است. معماری سازه پهبال با ترکیب معماری‌ سازه‌ زیر بخش‌های پرنده و توجه به مواردی مانند الزامات مربوط به نصب سیستم‌ها، الزامات پنهان‌کاری و طراحی ماژولار سازه انجام شده است. برای بهینه-سازی معماری سازه، از یک مدل پارامتریک در نرم افزار CATIA استفاده شده است تا برای هدف حداقل وزن، موقعیت و ابعاد هندسی اعضای سازه‌ای بهینه شود. برای اعتبار سنجی نتایج، بیشینه تنش استاتیکی و بیشترین جابجایی سازه به کمک نرم افزار MSC/Patran محاسبه و با مقادیر بدست آمده از پروسه بهینه‌سازی مقایسه شده‌اند. تحلیل دینامیکی و پایداری کمانشی پوسته‌های کامپوزیتی سازه نیز در ادامه کنترل شده است. متدولوژی ارائه شده به صورت یک نمونه مطالعاتی بر روی یک پهبال هدف تشریح شده است. وزن سازه بهینه-سازی شده نیز با نمونه‌های تحقیقاتی پهبال‌های همرده تأیید شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimal structural architecture of Lambda wing UAV

نویسندگان [English]

  • Shahram Yousefi 1
  • Abdollah Panahi 2
  • Mohammad Ali Vaziry 1
  • Noorodin Fazli 3
1 Mechanical department, MUT University, Shahin shahr, Isfahan, Iran
2 Mechanical department, MUT University, Shahin shahr, Isfahan, Iran
3 Aerospace department, Sharif University, Tehran, Iran
چکیده [English]

Optimized structural architect of an Unmanned Lambda Wing Aerial Vehicle (ULWAV) during conceptual design has proven to be a significant challenge due to its unconventional configuration and no historical data for the structural architect. This paper aims to develop a new approach for structural design layout of new generation unconventional aircraft especially for ULWAV. The first step in this approach is to investigate the affecting parameters on structural architecture of these aircrafts then using of modal analysis to identification the behavior of these unconventional geometries for a general methodology development. The result of this modal analysis is apportion aircraft geometry to conventional substructures with already well-established defined architect. ULWAV structure architecture has been done by combining the structural architecture of sub-sections and with respect to requirements for systems installation, stealth design objective and packaging requirements. Here the CATIA software is used to optimize general architect with parametric model. To validate the results, the maximum static stress and maximum displacement of the structure were calculated using MSC / Patran software and compared with the values obtained from the optimization process. Dynamic analysis and buckling stability of structural composite shells are also controlled below. The architect methodology was applied to a case study of an ULWAV. The weight of the optimized structure has also been confirmed by typical case study researches.

کلیدواژه‌ها [English]

  • Modal analysis
  • Optimization
  • Structural architect methodology
  • Unconventional aircraft
  • Unmanned Lambda Wing Aerial Vehicle
[1] M.D. Sensmeier and J.A. Samareh, A study of vehicle structural layouts in post-WWII aircraft, 45th AIAA/ASME/ASCE/AHS /ASC Structures, Structural Dynamics & Materials Conference, Palm Springs, California, 2004.
[2]Hu Tianyuan and Yu Xiongqin, Aerodynamic/ Stealthy/ Structural Multidisciplinary Design Optimization of Unmanned Combat Air vehicle, Chinese Journal of Aeronautics, 16 September 2008.
[3]Wolf R. Krüger, D. Hoffmann, Design Considerations for a UCAV Wing for Subsonic and Transonic Aeroelastic and Flight Mechanic Wind Tunnel Tests, Meeting proceedings RTOMP-AVT-145, France, 2007.
[4] Hu Tianyuan, Aerodynamic / Stealthy / Structural Multidisciplinary Design Optimization of Unmanned Combat Air Vehicle, Chinese Journal of Aeronautics pp. 380-386, 2009.
[5] Yalin Pan, Application of Multidisciplinary Design Optimization on Advanced Configuration Aircraft, J. Aerosp. Technol. Manag., São José dos Campos, Vol.9, No 1, pp.63-70, Jan-Mar, 2017.
[6] P. N. Vinay, Investigation On Structural Aspects Of Unmanned Combat Air Vehicle For Aeroelastic Analysis, IJAET, Vol.II, Issue IV, October-December,2011/278-283.
[7] Evren Sakarya, A Study on Evaluation of Aeroelastic Characteristics of a UCAV Configuration, AIAA 10.2514/6.2018-3328, 2018.
[8]           Johannes M. Schweiger, Atlee M. Cunningham Jr, Structural Design Efforts for the MULDICON Configuration, AIAA AVIATION Forum, June 25-29, 2018.
[9] J. Eves, et al, Topology Optimization of Aircraft with Non-Conventional Configurations, 8th World Congress on Structural and Multidisciplinary Optimization, June 1 - 5, Lisbon, Portugal, 2009.
[10] M. Johansson, Propulsion integration in an UAV, AIAA 2006–2834, 24th Applied Aerodynamics Conference, Reston, Virginia, US,5–8 June 2006.
[11] Shi, L. and R.W. Guo, Serpentine inlet design and analysis, AIAA 2012-0839, 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Reston, Virginia, US, 9–12 January 2012.
[12] J. Whittenbury, Configuration design development of the navy UCAS-D X-47B, AIAA 2011–7041, AIAA Centennial of Naval Aviation Forum ‘100 Years of Achievement and Progress’, Reston, Virginia, US, 21–22 September 2011.
[13] Joe Coppin, Aerodynamics, Stability and Shape Optimization of Unmanned Combat Air Vehicles, PHD Thesis, University of Sheffield, Department of Mechanical Engineering, 2014.
[14] E. Sepulveda, H. Smith, Technology challenges of stealth unmanned combat aerial vehicles, The Aeronautical Journal September, Volume 121, No 1243, 2017.
[15] Leland M. Nicolai, Grant E.Carichner, Fundamentals of aircraft and airship design, Volume-I Aircraft Design, American institute of aeronautics and astronautics Inc., Restone, Virginia, 2010.
[16] Martin Neubauer, Structural Design Aspects and Criteria for Military UAV, Accessed on 8 July 2020; http://www.rto.nato.int/abstracts.asp.
[17] Maj. MERCURIO Andrea, nEUROn UCAV: Development and Operational Assessment Campaign, STO-MP-SCI-269, 2015.
[18] J. A.Samareh, Survey of Shape Parameterization Techniques for High-Fidelity Multidisciplinary Shape Optimization, AIAA Journal, Vol. 39, No. 5, pp. 877-883, 2001.
[19] Yu Wang, Lei Liu, Yu Xing, Zhenbo Yang, Investigation of wing structure layout of aerospace plane based on the finite element method, Advances in Mechanical Engineering, Vol. 9(7) 1–9, 2017.
[20] CATIA V5R19: User’s manual, CAD design, 2006.
[21] V. Saran, V. Jayakumar, G. Bharathiraja, Analysis of natural frequency for an aircraft wing structure under pre-stress, International Journal of Mechanical Engineering and Technology (IJMET), Volume 8, Issue 8, pp. 1118–1123,, August 2017.
[22] Yu Li, Jingwu He, Yuexi Xiong, Layout Design Optimization of Spars under Multiple Load Cases of the High-Aspect-Ratio Wing, International Journal of Aerospace and Mechanical Engineering Vol. 11, No:10, 2017.
[23] Gürkan İRSEL, stress analysis and design optimization with catia, Applied Computer Science, vol. 12, no. 1, pp. 27–39, 2015.
[24] Metallic materials and elements for aerospace vehicle structur, MIL-HDBK-5J, 31 january 2003, Accessed on 8 July 2020; http://www.everyspec.com.
[25] Chapman, R.E. Unmanned combat aerial vehicles: Dawn of a new age?, Air and Space Power J, 16, (2), pp 60-73, 2002.
[26] S. J. Woolvin, A conceptual Design Study of the 1303 configuration, 24th Applied Aerodynamics Conference, AIAA Paper 2006-2991, 2006.
[27] Carsten M., Russell M.Cummingsb, Andreas Schüttea, Jan Vormwega, Ryan G.Mayec, Tiger L.Jeansc, Multi-disciplinary design and performance assessment of effective, agile NATO air vehicles, Aerospace Science and Technology, DOI 10.1016/j.ast.2020.105764, 2020.
[28] C. M. ,Liersch, Gavin Bishop, Conceptual Design of a 53deg Swept Flying Wing UCAV Configuration, AIAA AVIATION Forum, Atlanta, Georgia, June 25-29, 2018.
[29] Arne Voss, Thomas Klimmek, Design and Sizing on a Parametric Structural Model for a UCAV Configuration for Loads and Aeroelastic Analysis, CEAS Aeronautical Journal, DOI 10.1007/s13272-016-0223-2, 2016.
[30] A. Levy, et al, Final Report, Project 7–8: Team Cerberus – UCAV, Haifa, Israel, 2009.
[31] E.A. Valencia, Weight assessment for a blended wing Body-Unmanned aerial vehicle implementing boundary layer ingestion, CMSME 2018.
[32] MSC/PATRAN Version 2012: User’s manual.
[33] HESA Material Test Results.