طراحی سخت افزاری کنترلر دوکاناله دبی سوخت موتور توربوفن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد / دانشکده مهندسی مکانیک ، دانشگاه علم و صنعت ایران

2 عضو هیات علمی / دانشکده مهندسی مکانیک، دانشگاه علم و صنعت

چکیده

در این مقاله ابتدا مدل سازی موتور توربوفن و سپس طراحی کنترلر دبی سوخت بر اساس الگوریتم Min-Max انجام شده است. سیستم کنترل موتور بصورت دوکاناله که به معنای دو کنترلر مستقل از یکدیگر اما مرتبط با هم است، طراحی شده است. در تست نرم افزار در حلقه (MIL)، کنترلر و مدل موتور در رایانه اجرا شده ولی در تست سخت افزاردر حلقه (HIL)، کنترلر بر روی یک برد آردوینو پیاده سازی شده که از طریق کابل USB با مدل موجود در کامپیوتر مرتبط می شود. هدف اصلی کنترلر رعایت قیود موتور، تامین دبی سوخت بر اساس تراست مورد نظر خلبان در حداقل زمان و عدم تغییرات سریع دبی سوخت می باشد. نتایج تست های MIL و HIL به ازای ورودی های مختلف بررسی شده است که نشان می دهد کنترلر به درستی موارد فوق را رعایت کرده است. تنها تفاوت نتایج تست های HIL و MIL، سرعت پایین تر کنترلر در تست HIL می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Hardware design of Dual Channel turbofan engine fuel flow controller

نویسندگان [English]

  • Mohammad Hosein Amirabdollahian 1
  • Morteza Montazeri 2
1 Department of Mechanical engineering , Iran University Of Science & Technology
2 School of Mechanical Engineering- Iran University of Science & Technology
چکیده [English]

In this paper, first the turbofan engine is modeled and then the fuel flow controller is designed based on the Min-Max algorithm. The engine control system is designed as a dual channel, which means two controllers independent of each other but connected to each other. In the Model-in-the-Loop (MIL) test, the controller and the engine model are run on the computer, but for the Hardware-in-the-Loop (HIL) test, the controller is implemented on an Arduino board that connects to the computer model via USB cable. The main purpose of the controller is to comply with engine restrictions, to provide fuel flow based on the pilot's desired trust in the minimum time and no rapid changes in fuel flow. The results of MIL and HIL tests were evaluated for different inputs, which shows that the controller correctly observed the above notes. The only difference between the HIL and MIL test results is the lower speed of the controller in the HIL test.

کلیدواژه‌ها [English]

  • Turbofan
  • Fuel Flow
  • Min-Max Controller
  • Active Channel Selection
  • Hardware-in-the-Loop (HIL)
[1] H. Austin Spang, H. Brown, Control of jet engines, Control Engineering Practice, Vol. 7, pp. 1043-1059, 1999.
[2] M. Montazeri-Gh, M. Safarabadi-F, Modeling and simulation of gas turbine aero-engien performance for fuel control system design, International Journal of Industrial Engineering & Production Research, Vol. 19, No. 10, pp. 99-107, 2006.
[3] M. Montazeri-Gh, S. Abyaneh, S. Kazemnejad, Hardware-in-the-loop simulation of two-shaft gas turbine engine’s electronic control unit, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of System and Control Engineering , Vol. 230, No. 6, 2016.
[4] J. W. Chapman, T. M. Lavelle, R. D. May, J. S. Litt, T. H. Guo, Propulsion system simulation using the toolbox for the modeling and analysis of thermodynamic systems (T-MATS), 2014.
[5] K. Wilson, M. P. Schoen, Jet Engine Modeling and Control Using T-MATS, 2020.
[6] S. S. Ahmed, M. K. Zeb, S. Salamat, Methodology for Development of Complete Engine Deck for a Low Bypass Turbofan Engine, IEEE, 2021.
[7] M. Montazeri-Gh, S. Jafari, S.A.R. Miran, E. Mohammadi, Modeling of microjet engine by system identification method, International Conference of the Iranian Aerospace Association, Tehran: University of Tehran, 2013. (in Persian)
[8] E. Mohammadi, M. Montazeri-Gh, A New Approach to the Gray-Box Identification of Wiener Models With the Application of Gas Turbine Engine Modeling, Journal of Engineering for Gas Turbines and Power, Vol. 137, No. 7, 2015.
[9] A. Khodadad Mostashiri, Hardware in the loop simulation fuel unit control for turbofan engine in flight conditions, Master of Science Thesis, Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, 2018. (in Persian)
[10] Q. Jia, X. Shi, H. Li, X. Han, H. Xiao, Multivariable robust gain scheduled LPV control synthesis of turbofan engine, 8th International Conference on Mechanical and Aerospace Engineering (ICMAE), Prague, Czech Republic,  2017.
[11] M. Montazeri-Gh, A. Safari, Tuning of fuzzy fuel controller for aero-engine thrust regulation and safety considerations using genetic algorithm, Aerosapce Knowledge and Technology Journal, Vol. 15, No. 3, pp. 183-192, 2011.(in Persian)
[12] D. Han, A Study on Application of Fuzzy Adaptive Unscented Kalman Filter to Nonlinear Turbojet Engine Control, International Journal of Aeronautical and Space Sciences, Vol. 19, No. 2, pp. 399-410, 2018.
[13] R. Andoga, L. Főző, R. Kovács, K. Beneda, T. Moravec, M. Schreiner, Robust Control of Small Turbojet Engines, Advanced Control Systems and Optimization Techniques, Vol. 7, No. 3, 2019.
[14] D. Xian, G. Ying-Qing, Design of Model Predictive Controller for Commercial Turbofan Engine, 2013.
[15] M. Montazeri-Gh, M. Ehteshami, A. Imani, Multivariable Model Predictive Control Design for a Turbofan Engine and
Performance Comparison with Min-Max Controller, Sientific Journal of Fluid Mechnics and Aerodynamics, Vol. 8, No. 1, pp. 161-176, 2019.
[16] A. Hadade, T. Yoneyama, A Novel Approach for Stall Prevention and Rotation Speed Limiting in a Min–Max Controller Structure, Journal of Control , Automation and Electrical Systems, Vol. 30, No. 1, pp. 27-40, 2019.
[17] S.M. Tajalli, S.A. Tajalli, Thermodynamic simulation of two-shaft gas turbine to study invasive weeds optimization and Min-Max controller strategies considering air-cooled blades, Journal of Mechanical Science and Technology, Vol. 33, No. 2, pp. 931-938, 2019.
[18] M. Montazeri-Gh, S. Jafari, Evolutionary Optimization for Gain Tuning of jet Engine Min-Max Fuel Controller, International Journal of Industrial Engineering & Production Research, Vol. 19, No. 10, pp. 99-107, 2011.
[19] CFMI Customer Training Services, Training Manual CFM56-5A Engine Systems, CFMI,  pp. 7-13, 2000.