بررسی تجربی آثار سرش جانبی بر مشخصه‌های ائرودینامیکی استاتیکی و اندازه‌گیری مشتقات دینامیکی طولی مدل هواپیمای بال مثلثی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری / پژوهشگاه هوافضا

2 عضو هیات علمی / پژوهشگاه هوافضا

3 عضو هیات علمی / دانشکده مهندسی هوافضا، دانشگاه صنعتی شریف

4 عضو هیات علمی / دانشکده علوم و فنون نوین، دانشگاه تهران

چکیده

در این پژوهش آثار سرش جانبی بر مشخصه‌های ائرودینامیکی مدل هواپیمای بال مثلثی در حالت استاتیکی و همچنین روشی تجربی جهت تعیین مشتقات پایداری دینامیکی هواپیما ارائه شده است. داده‌های اندازه‌گیری شده به‌صورت یک تاریخچة زمانی از ضرایب نیروها و گشتاورهای ائرودینامیکی می‌باشد. با استفاده از این داده‌ها مؤلفه‌های هم­فاز و غیر هم­فاز ضرایب ائرودینامیکی تعیین شده است. تست‌ها در عدد رینولدز 1750000 انجام شده است. با افزایش زاویة سرش جانبی، مقدار حداکثر ضریب بـرآ از مقدار 1/32 در زاویة سرش جانبی صفر درجه به مقدار 0/8 در زاویة سرش جانبی 30 درجه کاهش می‌یابد. با افزایش زاویة سرش جانبی شیب منحنی بـرآ و پایداری طولی کاهش پیدا می‌کند. در زوایای حملة متوسط کوچک تغییر چندانی در مؤلفة هم‌فاز و غیر هم‌فاز ضریب نیروی عمودی مشاهده نشده است. در زوایای حملة متوسط بزرگتر، این تغییرات محسوس است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An experimental investigation in effects of side slip on static aerodynamics specifications and longitudinal dynamics measurements of a delta wing airplane model

نویسندگان [English]

  • Arsalan Ghajar 1
  • Seyed Arash Seyed Shams Taleghani 2
  • Mohammad Reza Soltani 3
  • Mehran Masdari 4
4 Tehran university
چکیده [English]

In this study, the effects of side slip has investigated on a delta wing airplane model aerodynamics specifications and also an experimental method for airplane dynamics stability derivatives determination is presented. Measured data obtained from force oscillation tests are time historical of aerodynamic forces and moments. Using this data in-phase and out-of-phase of aerodynamic coefficient will be determined. In this investigation results of static and dynamic tests of a model at high angle of attack maneuver in National Low Speed Wind Tunnel (NLSWT) at Reynolds number about 1.75 millions are presented. Increasing of side slip angle results that maximum lift coefficient, slop of lift curve and longitudinal stability will be decreased. At small mean angle of attack there is no variation in in-phase and out-of-phase of normal force coefficient at larger mean angle of attack these variation is significant. Also In-phase and out-of-phase of pitching moment coefficient is strongly depend on angle of attack.

کلیدواژه‌ها [English]

  • Wind Tunnel
  • unsteady aerodynamics
  • delta wing
  • aerodynamics specifications
  • forced oscillation

[1] J. D. Anderson, Fundamentals of Aerodynamics, McGraw-Hill, Second Edition, 1991.

[2] F. M. Payne, T. T. Ng, R. C. Nelson, L. B. Schiff, Visualization And Flow Surveys of The Leading-Edge Vortex Structure on Delta Wing planforms, AIAA Paper 86-0330, 1986.

[3] F. M. Payne, The Structure of Leading Edge Vortex Flows Including Vortex Breakdown, PhD. Thesis, University of Notre Dame, Deptartment of Aerospace and Mechanical Engineering, Notre Dame, IN, 1987.

[4] M. V. Lowson, the three dimensional vortex sheet Structure on Delta Wing, AGARD CP-438, Fluid Dynamics of Three-Dimensional Turbulent Shear Flows and Transition, 1988.

[5] J. F. Campbell, J. R. Chambers, Patterns In The Sky-Natural Visualization of Aircraft Flow Fields, NASA Langley Research Center, NASA SP-514, 1994.

[6] E. C. Polhamus, Prediction of Vortex- Lift Characteristics by A Leading-Edge Suction Analogy, Journal of Aircraft, Vol. 8, No. 4, pp. 193-199, April 1971.

[7] D. Hummel, on the Vortex Formation over a Slender Wing At Large Incidence, AGARD CP-247, High Angle of Attack Aerodynamics, 1978.

[8] W. H. Wentz, D. L. Kohlman, Vortex Breakdown on Slender Sharp-Edged Wings, Journal of Aircraft, Vol. 8, pp. 156-161,1971.

[9] M. H. Doolabi, H. Ansarian, Computational investigation of mach number and angle attack effects on the flow pattern over a 60o delta wing, Aerosapce Knowledge and Technology Journal, Vol. 3, No. 2, pp. 19-33, Autumn and Winter 2014. (in Persianفارسی )

[10] M. D. Manshadi, M. Feizian, M. Bazzazzadeh, M. Eilbeigi, Evaluation of wing vortex behavior at high angle attack by using laser visualization and numerical method, Aerosapce Knowledge and Technology Journal, Vol. 4, No. 2, pp. 21-33,Winter 2016. (in Persianفارسی )

[11] M. R. Soltani, A. Rajabi, A. Davari Investigation of reduced frequency on vortex and aerodynamics forces on delta wings, The University of Tehran’s Scientific Journal, Vol. 38, Issue 4, Autumn 2004. (in Persianفارسی )

[12] W. H. Wentz, D. L. Kohlman, Vortex Breakdown on Slender Sharp Edged Wings, Journal of Aricraft, Vol. 8, No. 3, 1971, pp. 319-22.

[13] J. T. Kegelman, F. W. Roos, Effects of leading- edge shape and vortex burst on the flow field of a70-degree-sweep delta wing, AIAA paper, January1989.

[14] P. B. Eranshaw, J. A. Law ford, Low-Speed Wind-Tunnel Experiments on a Series of Sharp-Edged Delta Wings, ARC Reports and Memoranda No.3424, March 1964.

[15] J. Rom, High Angle of Attack Aerodynamics, Springer Verlag, New York, 1992.

[16] D. H. Peckham, S. A. Atkinson, Preliminary Results of Low Speed Wind Tunnel Tests on A Gothic Wing of Aspect Ratio 1.0, Report Cp- 508, Aeronautical Research Council, 1957.

[17] B. J. Elle, An investigation at low speed of the flow near the apex of thin delta wings with sharp leading edges, Reports And Memoranda 3176, Aeronautical Research Council, January 1958.

[18] J. Kegelman, F. Roos, Effects of Leading-Edge Shape And Vortex Burst on The Flow Field of A 70 Degree Sweep Delta-Wing, AIAA Paper 89-0086, 1989.

[19] J. Kegelman, F. Roos, The Flow field of Bursting Vortices over Moderately Swept Delta Wings, AIAA Paper, 1990.

[20] J. M. Delery, Aspects of Vortex Breakdown, Progress in Aerospace Sciences, Vol.30, pp. 1-59, 1994.

[21] F. M. Payne, T. T. Ng, R. C. Nelson, Visualization and Flow Surveys of the Leading Edge Vortex Structure on Delta Wing Planforms, AIAA Paper, 1986.

[22] A. M. Mitchell, D. Barberis, J. Delery, Oscillation of Vortex Breakdown Location & Its control by Tangential Blowing, AIAA Paper 98-2914, 1998.

[23] N. C. Lambourne, D. W. Bryer, the Bursting of Leading-Edge Vortices–Some Observations and Discussions of the Phenomenon, Reports and Memoranda 3282, Aeronautical Research Council, 1962.

[24] F. M. Payne, T. T. Ng, R. C. Nelson, Experimental Study of the Velocity Field on a Delta Wing, AIAA Paper 87-1231, June 1987.

[25] D. I. Greenwell, Pitfalls in Interpretation of Delta Wing Flow Visualization, NATO RTO Symposium on Advanced Flow Management, Leon, Norway, RTO MP–069(I)–(SYA)-05, 2001.

[26] C. Gibbs, A. Sethna, I. Wang, D. M. Tang, E. H. Dowell, Aeroelastic Stability of a cantilevered Plate in Yawed Subsonic Flow, Journal of Fluids Structure, Vol. 49, pp. 450-462, 2014.

[27] D. M. Tang, E. H. Dowell, Computational/Experimental Aeroelastic Study for a Horizontal Tail Model with Freeplay, AIAA Journal, Vol. 51, pp. 341-352, 2013.

[28] D. M. Tang, E. H. Dowell, Effects of a Free-to-Roll Fuselage on Wing Flutter, Theory and Experiment, AIAA Journal, 52, pp. 2625-2632, 2014.

[29] D. M. Tang, E. H. Dowell, Experimental Aerodynamic Response for an Oscillating Airfoil in Buffeting Flow, AIAA Journal, Vol. 52, pp. 1170–1179, 2014.

[30] D. M. Tang, E. H. Dowell, Experimental Aeroelastic Response for a Freeplay Control Surface in Buffeting Flow, AIAA Journal, Vol. 51, pp. 2852–2861, 2013.

[31] F. Besem, J. D. Kamrass, J. P. Thomas, D. M. Tang, R. E. Kielb, Vortex-Induced Vibration and Frequency Lock-in of an Airfoil at High Angles of Attack, Journal of Fluids Engineering Trans. ASME, Vol. 138, 2016.

[32] A. Khrabrov, D. Greenwell, TsAGI 70° and 65° Delta Wings Test Cases, RTO-TR-AVT-080, Chapter 9, 2014.

[33] L. Zhitao, J. Yubiao, H. Yong, Experimental Research on Unsteady Vortex Separation and Control about a Delta-Wing-Body Combination, 10th International Conference on Fluid Control, Measurements and Visualization, Moscow, Russia, August 17-21, 2009.

[34] J. M. Brandon, G. H. Shah, Effect of lager amplitude pitching motions on the unsteady aerodynamic characteristics of flat-plate wings, AIAA Paper, August 1988.