کنترل جریان به روش میدان مگنتوهیدرودینامیک در ورودی هوای فراصوت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد هوافضا / پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری

2 مربی / پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری

3 عضو هیات علمی / پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوی

چکیده

طراحی حامل‌های فضایی که امکان استفاده مجدد را داشته باشند، می‌تواند به میزان قابل توجهی از هزینه‌ ماموریت‌های فضایی بکاهد. این حامل‌ها باید مجهز به موتورهایی باشند که توانایی عملکرد مناسب در رژیم جریان مافوق‌صوت و ماوراءصوت را داشته باشند. طراحی ورودی هوای این موتورها به عنوان یک چالش کلیدی مطرح می‌شود. یکی از مهمترین مسائلی که بر کارایی این موتورها تاثیر گذار است، شوک‌های مایل به وجود آمده در ورودی موتور است. گذر جریان هوا از این شوک‌‌ها شرایط را برای احتراق پایدار در موتور فراهم می‌کند. بهینه‌سازی کارایی ورودی‌‌ هوای این موتورها به روش‌های متعدد انجام می‌شود. در این مطالعه سعی در بهینه‌سازی یک ورودی هوای مافوق صوت، با استفاده از روش مگنتوهیدرودینامیک، به عنوان یک تکنیک کنترل جریانی پیشرفته، شده است. تحلیل نتایج این مطالعه حاکی از آن است که پارامتر MFR 62/21 درصد، میانگین دما و بازیابی فشارکل ذرات خروجی به سمت محفظه احتراق به ترتیب 51/10 و 5/14 درصد افزایش و واپیچیدگی جریان 93/18 درصد کاهش می‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Flow control by magnetohydrodynamic field method at the supersonic air intake

نویسندگان [English]

  • ahmad ghanbari motlagh 1
  • soheila abdolahipour 2
  • Arash Shams taleghani 3
1 Aerospace research institute
2 aerospace research institute
چکیده [English]

The design of space launch vehicles that can be reused can significantly reduce the cost of space missions. These launch vehicles should be equipped with engines that are capable of proper operation in the supersonic and hypersonic flow regimes. The design of the air intake of these engines is a key challenge. One of the most important issues affecting the performance of these engines is the shocks that are expected at the entrance to the engine. The flow of air from these shocks provides conditions for stable combustion in the engine. The air intake efficiency of these engines is optimized in several ways. In this study, the attempt to optimize a supersonic air intake using the magnetohydrodynamic method has been developed as an advanced flow control technique. The results of this study showed that the MFR parameter increased by 21.62%, the mean temperature increased by 10.51%, pressure recovery of the exhaust particles towards the combustion chamber increased by 14.5%, and the flow distortion decreased by 18.93%.

کلیدواژه‌ها [English]

  • Magnetohydrodynamic
  • flow control
  • air intake
  • Ramjet
  • Scramjet
[1] C. Hirschen, D. Herrmann, A. Gülhan, Experimental Investigations of the Performance and Unsteady Behavior of a Supersonic Intake, Journal of Spacecraft and Rockets, Vol. 23, No. 3, May–June 2007
[2] G. K. Suryanarayana, R. Dubey, Performance enhancement of a ramjet air intake by passive bleed of boundary layer, Journal of Spacecraft and Rockets, Vol. 56, No. 3, pp. 875-886, 2019.‏
[3] R. Balasubramanian, K. Anandhanarayanan, R. Krishnamurthy, D. Chakraborty ,Magnetohydrodynamic Flow Control of a Hypersonic Cruise Vehicle Based on AJAX Concept, Journal of Spacecraft and Rockets, Vol.53, No. 4, July-August 2016
[4] M. Sano, H. Yoshida, S. Wakabayashi, T. Chiga, T. Sato, A. Hashimoto, T. Kojima, Numerical Simulation of the Side-Clearance Effect on the Supersonic Air-Inlet Performance for High Mach Integrated Control Experiment “HIMICO”, AIAA Propulsion and Energy Forum, July 9-11, 2018.
[5] H. Yoshida, T. Nagao, A. Sato, S. Wakabayashi, T. Sato, A. Hashimoto, T. Aoyama, T. Kojima, Numerical Study of Hypersonic Air Intake Aerodynamics Performance for High Mach Integrated Control Experiment “HIMICO”, 53rd AIAA Propulsion and Energy Forum, 2017.
[6] M.R. Soltani, J. Sepahi Younsi, M. Farahani, Effects of Boundary-Layer Bleed Parameters on Supersonic Intake Performance, Journal of Spacecraft and Rockets, Vol. 31, No. 3, May–June 2015.
[7] R. Sivakumar, V. Babu, Numerical Simulations of Flow in a 3-D Supersonic Intake at High Mach Numbers, Defense Science Journal, Vol. 56, No. 4, October , pp. 465-476,2006
[8] B.U. Reinartz, C.D. Herrmann, J. Ballmann, W.W. Koschel, Aerodynamic Performance Analysis of a Hypersonic Inlet Isolator Using Computation and Experiment, Journal of Spacecraft and Rockets, Vol. 19, No. 5, September–October 2003
[9]T. Fodeibou, Z. Huque, J. Galvis, Effects of Mach Number and Angle of Attack on
Mass Flow Rates and Entropy Gain in a Supersonic Inlet, International Journal of Aerospace and Mechanical Engineering, Vol. 2, No. 10, 2008
[10] M.R. Soltani, J. Sepahi Younsi, A. Daliri, Performance investigation of a supersonic air intake in the presence of the boundary layer suction, Journal of Aerospace Engineering, Vol. 229, No. 8, pp. 1495-1509, 2014.
[11] V. Merchant, J. Radhakrishnan, Design and Optimization of Supersonic Intake, IOP Conference Series: Materials Science and Engineering, Vol. 225, No. 1, 2017.‏
[12]V. Rajashree, P. Manivannan, G. Dinesh kumar, Computational Analysis of Scramjet Inlet, International Journal of Innovative Research in Science, Engineering and Technology ,Vol. 3, No. 3, March 2014.
[13] N. Hoyle, N.W. Bressloff, A.J. Keane, Design Optimization of a Two-Dimensional Subsonic Engine Air Intake, AIAA JOURNAL ,Vol.44, No. 11, November 2006.
[14] D. Dalle, M.L. Fotia, J. Driscoll, Reduced-Order Modeling of Two-Dimensional Supersonic Flows with Applications to Scramjet Inlets, Journal of Propulsion and Power, Vol. 26, No. 3, pp. 545–555, 2010.
[15] S. Torrez, J. Driscoll, D. Dalle, M. Bolender, D. Doman, Hypersonic Vehicle Thrust Sensitivity to Angle of Attack and Mach Number, AIAA Atmospheric Flight Mechanics Conference, 2009.
[16] D. Dalle, S. Torrez, J. Driscoll, Performance Analysis of Variable-Geometry Scramjet Inlets Using a Low-Order Model, 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 31 July - 03 August 2011,
[17] S. Das, J.K. Prasad, Starting Characteristics of a Rectangular Supersonic Air-Intake with Cowl Deflection, The Aeronautical Journal, Volume 114, Issue 1153, pp. 177-189, March 2010.
[18]V.V. Kumar, S. Bogadi, Effect of micro-vortex generator in hypersonic inlet, Int. J. Appl. Res. Mech. Eng, 2011.
[19] V.M. Don, E. Avital, F. Motallebi. "Computational and Experimental Investigation of Supersonic Flow and their Controls." Proceedings of World Academy of Science, Engineering and Technology, No. 73, 2013.‏
[20] E. Gurijnov, P. Harsha, AJAX, New Direction in Hypersonic Technology, 7th International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper, 1996.
[21] D.V. GAITONDE, D.G. FLETCHER, Future Technologies Application of Plasma Devices for Vehicle Systems, Critical Technologies for Hypersonic Vehicle Development, RTO AVT Lecture Series, von Kármán Inst., Belgium,2004.
[22] A. Starikovskiy, N. Aleksandrov, Nonequilibrium Plasma Aerodynamics, Aeronautics and Astronautics, Max Mulder, IntechOpen, DOI: 10.5772/22396. Available from: https://www.intechopen.com/books/aeronautics-and-astronautics/nonequilibrium-plasma-aerodynamics, 2011.
[23] Y.M. Lee, P.A. Czysz, D. Petley, Magnetohydrodynamic Energy Bypass Applications for Single Stage-to-Orbit Vehicles, 10th International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper , 2001.
[24] A. Kuranov, A. Korabelnicov, V. Kichinskiy, E. G. Sheikin, Fundamental Techniques of the AJAX Concept. Modern State of Research, 10th International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper,2001.
[25] W. Koschel, A. Schneider, Detailed analysis of a mixed compression hypersonic intake, In Fourteenth International Symposium on Air Breathing Engines, AIAA,1999.
[26] R. Sivakumar, V. Babu ,Numerical simulations of flow in a 3-D supersonic intake at high Mach numbers, Defence Science Journal, pp. 465–476, 2006.
[27] N. M. Sudharsan, V. A. Jambekhar, V. Babu, A validation study of OpenFOAM using the supersonic flow in a mixed compression intake, Proceedings of the Institution of Mechanical Engineers, Journal of Aerospace Engineering, pp.673-679, 2010.
[28] B. John, P. Senthilkumar, Alterations of cowl Lip for the mprovement of Supersonic-Intake Performance, Journal of Applied Fluid Mechanics, Vol. 11, No.1,2018.
[29] R. BALASUBRAMANIAN, K. ANANDHANARAYANAN, R. Krishnamurthy, D. CHAKRABORTY, Mitigation of shock-induced flow separation using magnetohydrodynamic flow control, springerlink, Sādhanā, Vol. 42, No. 3, pp.379–390, 2017.
[30] J.A. Ekaterinaris, Numerical investigation of the effect of magnetic fields on shock/boundary layer interaction, 19th AIAA Computational Fluid DynamicsSan Antonio, Texas, 22 - 25 June 2009.
[31] J.A. Ekaterinaris, High-order numerical method for magnetohydrodynamic control of shock-induced separation, AIAA JOURNAL, Vol. 48, No. 12, December, 2010.
[32] S. Changbing, L. Yinghong, C. Bangqin, W. Jian, C. Jun, L. Yiwen, MHD Flow Control of Oblique Shock Waves Around Ramps in Low-temperature Supersonic Flows, Chinese Journal of Aeronautics, Vol.23, No. 1, pp.22-32, 2010.