ردگیری و تعقیب سه‌بعدی هدف مانوری هوایی با استفاده سنسور تصویری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک‌اشتر

2 دانشجوی دکتری / مهندسی هوافضا، مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک‌اشتر

چکیده

ردگیری هدف برای پهپادهایی که به سنسور تصویری مونوکولار (یا تک‌چشمی) مجهز هستند، دشوار است چرا که سنسور نمی‌تواند برد میان خود و هدف هوایی را با دقت مناسب اندازه‌گیری کند. این مساله در ردگیری اهداف مانوری در فضای سه‌بعدی تشدید می‌شود. برای رفع این مشکل، دقت مدل‌های دینامیکی برای پیش‌بینی حرکت و مانور هدف از اهمیت بالایی برخوردار می‌شود. ما در این مقاله، با شبیه‌سازی‌های عددی، عملکرد سه مدل دینامیکی مختلف را با مدل اندازه‌گیری یک دوربین مونوکولار در ردگیری یک هدف مانوری جرم‌-نقطه‌ای بررسی و مقایسه کرده‌ایم. این مدل‌ها از لحاظ دستگاه مختصات و مدل در نظر گرفته شده برای مدل‌سازی شتاب هدف متفاوت هستند. زمان اجرا و مجذور میانگین مربعات خطا به عنوان معیارهای مقایسه بین این مدل‌ها در نظر گرفته شده‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Three-dimensional tracking of aerial maneuvering target using a visual sensor

نویسندگان [English]

  • Mehran Nosratolahi 1
  • Meysam Delalat 2
  • Jalal Karimi 1
  • Seyed Hosein Sadati 1
1 Associate Professor, Aerospace Engineering Department, Malek Ashtar University of Technology
2 Ph.D Student, Malek Ashtar University of Technology
چکیده [English]

Since, monocular vision sensor cannot accurately measure relative range between the target and itself, it is difficult for UAVs equipped with this kind of sensors to track a target. This is exacerbated by the tracking a maneuvering aerial target in a three-dimensional space. To solve this problem, the accuracy of dynamic models is very important for predicting the movement and maneuvering of the target. This accuracy can be achieved by complicating and bringing the dynamic equations closer to the real dynamics of the vehicle, or by using appropriate models of the target acceleration. In this paper, we compare the performance three different dynamic models in tracking a mass-point maneuvering target. To do this, we used the UKF filter along with the monocular camera measurement model These models differ in terms of the coordinate system and the target acceleration model. The time spent and Root mean square error (RMSE) are considered as comparison criteria between these models.

کلیدواژه‌ها [English]

  • Target Tracking
  • Non-linear Kalman filter
  • Unscented Kalman Filter (UKF)
  • Visual sensor
  • Motion estimation
[1] G. W. Pulford, "A Survey of Manoeuvring Target Tracking Methods," arXiv preprint arXiv, 2015.
[2] S. Park and D. Jung, "Vision-Based Tracking of a Ground-Moving Target with UAV," International Journal of Aeronautical and Space Sciences, 2019.
[3] M. Ahmed and K. Subbarao, "Target Tracking in 3-D Using Estimation Based Nonlinear Control Laws for UAVs," Aerospace, vol. 3, no. 5, 1 February 2016.
[4] Y. Kim and H. Choi, "UAV guidance using a monocular-vision sensor for aerial target tracking," vol. 22, January 2014.
[5] Y. Dong, J. Huang and J. Ai, "Visual Perception-Based Target Aircraft Movement Prediction for Autonomous Air Combat," vol. 52, June 18, 2014.
[6] S. A. Quintero and J. P. Hespanha, "Vision-based target tracking with a small UAV: Optimization-based control strategies," Vols. Volume 32,, November 2014.
[7] H. S. Parekh, D. G. Thakore and U. K. J. Jaliya , "A Survey on Object Detection and Tracking Methods," February 2014.
[8] G. Mallikarjuna Rao and C. Satyanarayana, "Visual Object Target Tracking Using Particle Filter: A Survey," May 2013.
[9] V. N. Dobrokhodov, I. I. Kaminer, K. . D. Jones and R. Ghabcheloo, "Vision-Based Tracking and Motion Estimation for Moving Targets Using Unmanned Air Vehicles," May 23, 2012.
[10] O. Seung-Min, "Nonlinear Estimation for Vision-Based Air-to-Air Tracking," Georgia Institute of Technology, 2007-11-14.
[11] B. Brett and J. How, "Persistent vision-based search and track using multiple UAVs," Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics, 2007.
[12] V. Stepanyan and N. Hovakimyan, "Adaptive Disturbance Rejection Controller for Visual Tracking of a Maneuvering Target," July–August 2007.
[13] V. Stepanyan and N. Hovakimyan, "A Guidance Law for Visual Tracking of a Maneuvering Target," June 14-16, 2006.
[14] V. Stepanyan, "Phd Thesis: Vision Based Guidance and Flight Control in Problems of Aerial Tracking," Blacksburg, Virginia, July 31, 2006.
[15] Y. Ma, X. Ma and X. Song, "A Case Study on Air Combat Decision Using Approximated Dynamic Programming," Hindawi Publishing Corporation-Mathematical Problems in Engineering, 2014.
[16] L. Xiao and J. Huang, "Air Combat Maneuver Strategy Based on Risk-Decision," 2012.
[17] L. Fu, F. Xie, D. Wang and G. Meng, "The Overview for UAV Air-combat Decision Method".
[18] R. A. Wise and R. T. Rysdyk, "UAV Coordination for Autonomous Target Tracking," 2006.
[19] A. Tewari, Atmospheric and Space Flight Dynamics Modeling and Simulation with MATLAB and Simulink, Birkhauser Boston, 2007.
[20] J. R. Raol and J. Singh, FLIGHT MECHANICS MODELING and ANALYSIS, CRC Press, 2009.
[21] J. Verbeke and J. De Schutter, "Experimental maneuverability and agility quantification for rotary unmanned aerial vehicle," International Journal of Micro Air Vehicles, vol. 10, no. 1, pp. 3-11, 2018.
[22] Y. Bar-Shalom, X. Rong Li and T. Kirubarajan, Estimation with Applications To Tracking and Navigation, John Wiley & Sons, Inc., 2001.
[23] S. Challa, M. R. Morelande, D. Musicki and R. J. Evans, FUNDAMENTALS OF OBJECT TRACKING, Cambridge University Press, 2011.
[24] M. R. Moreland, D. Musicki and R. J. Evans, FUNDAMENTALS OF OBJECT TRACKING, Cambridge University Press, 2011.
[25] X. RONG LI and V. P. JILKOV, "Survey of Maneuvering Target Tracking. Part I: Dynamic Models," IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, vol. 39, no. 4, 2003.
[26] O. C. Ibe, Markov Processes for Stochastic Modeling, Elsevier , 2013.
[27] S. W. Thomas, "Learning to Track a Random-Walk Target Motion Using Markov Chain Monte Carlo," The University of Arizona, 2009.
[28] J. L. Meriam, L. G. Kraige and . J. N. Bolton, Engineering Mechanics: Dynamics, 8th Edition, Wiley, 2015.
[29] J. Kendrick, P. Maybeck and J. Reid, "Estimation of Aircraft Target Motion Using Orientation Measurements," Vols. AES-17, no. 2, March 1981.
[30] S.-M. Oh, "Phd Thesis: NONLINEAR ESTIMATION FOR VISION-BASED AIR-TO-AIR TRACKING," Georgia Institute of Technology, December 2007.
[31] X. Rong Li and V. P. Jilkov, "A Survey of Maneuvering Target Tracking—Part III: Measurement Models," in Proceedings of SPIE Conference on Signal and Data Processing, 2001.
[32] E. A. Wan and R. Van Der Merwe, "The unscented Kalman filter for nonlinear estimation," in IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, 2000.
[33] M. Doumiati, A. Charara, A. Victorino and D. Lechner, Vehicle Dynamics Estimation using Kalman Filtering, Wiley, 2013.
[34] S.-M. Oh and E. N. Johnson, "Relative Motion Estimation for Vision-based Formation Flight using Unscented Kalman Filter," AIAA Guidance, Navigation and Control Conference and Exhibit, August 2007.
[35] T. Yang, P. Li, H. Zhang, J. Li and Z. Li, "Monocular Vision SLAM-Based UAV Autonomous Landing in Emergencies and Unknown Environments," Electronics, vol. 7, no. 73, 2018.
[36] E. N. Johnson, A. J. Calise, Y. Watanabe and J. Ha, "Real-Time Vision-Based Relative Aircraft Navigation," JOURNAL OF AEROSPACE COMPUTING, INFORMATION, AND COMMUNICATION, April 2007.
[37] APPLICATION OF MULTIVARIABLE CONTROL THEORY TO AIRCRAFT CONTROL LAWS, HONEYWELL TECHNOLOGY CENTER, 1996.
[38] B. L. STEVENS, F. L. LEWIS and E. N. JOHNSON, AIRCRAFT CONTROL AND SIMULATION Third Edition, John Wiley & Sons, Inc., 2016.