مطالعه تجربی وابستگی سرعت صوت پیشرانه جامد به فشار به روش التراسونیک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد / گروه پژوهشی شیمی، پژوهشکده سامانه‌های حمل و نقل فضایی، پژوهشگاه فضایی ایران، سازمان فضایی ایران

2 عضو هیات علمی / دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران

3 عضو هیات علمی / پژوهشکده سامانه‌های حمل و نقل فضایی، پژوهشگاه فضایی ایران

چکیده

به‌منظور دست‌یابی به نتایج دقیق‌ نرخ سوزش پیشرانه جامد به‌روش التراسونیک، باید روابط وابستگی به فشار سرعت صوت نمونه‌آزمایشی، در الگوریتم‌های تعیین ضخامت لحظه‌ای اعمال گردد. در این مقاله ضمن ارائه‌ پیشینه‌جامعی بر روش التراسونیک و کاربری آن در اندازه‌گیری نرخ سوزش، به بررسی وابستگی سرعت صوت به فشار چندین ترکیب با پایه پلیمری HTPB (هیدروکسی ترمینیتد پلی‌بوتادین)پرداخته شده است. نمونه‌های پلیمری با قطرو ضخامت‌حدود30 میلی‌متر در فشارهای متفاوت مورد آزمایش قرار گرفته‌اند. با ثبت و سنجش زمان بین سیگنال‌های امواج التراسونیک ارسالی و اکوهای بازگشتی مربوط به نمونه آزمایشی، سرعت صوت در هر فشار تعیین گردیده است. محدوده فشارهای آزمایشی بین 0 و100 بار بوده و تغییرات سرعت صوت برای پلیمر HTPBدر دو فرآیند فشارگذاری و فشاربرداری ارزیابی شده است. نتایج حاکی از آن است که سرعت صوت نمونه‌های آزمایشی وابستگی فزآینده خفیف و خطی به فشار دارد. برای نمونه تغییرات سرعت صوت پلیمر HTPB در بازه فشارهای مذکور در حدود 40متر بر ثانیه برای مقدار میانگین 1620 متر بر ثانیه برآورد شده است. از دیگر موارد بررسی شده در این مطالعه، ارزیابی اثر فشار بر سرعت صوت ترکیبات مختلفی از HTPB با آمونیم پرکلرات و آلومینیم می‌باشد. در ادامه اقدام به انجام آزمایش‌هایی به‌منظور اثبات تکرارپذیری نتایج شده است. در این راستا عدم قطعیت نتایج سرعت صوت در دسته آزمایش‌های مشابه نیز محاسبه و ارائه گردیده است. عدم قطعیت به‌دست آمده برای HTPBخالص درحدود 3% بوده که با توجه به مطابقت نتایج به‌دست آمده با نتایج دیگر محققان، مقدار قابل قبولی به‌شمار می‌رود.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental Investigation of Pressure Dependency of Solid Propellant Sound Speed by Ultrasonic Technique

نویسندگان [English]

  • Ebrahim Ataee 1
  • Hojat Ghassemi 2
  • Ebrahim Zanjirian 3
چکیده [English]

In order to determine accurate solid propellant burning rate by ultrasonic method, pressure dependency relationship of sample`s sound speed should be applied on thickness algorithm. This article presents comprehensive background in ultrasonic method and its application in burning rate measurement. Also pressure dependency of sound speed for several composite propellants based on HTPB had been investigated. Experimental samples with 30 mm length and 30 mm diameter had been tested under different pressure. The sound speed values were determined in each pressure by measuring the flight time of omitted ultrasonic waves and its returned echoes. The pressure varied from zero to 100 bar and the experiments were done for both pressurization and depressurization conditions. The results show that the samples sound speed depends slightly on pressure. Furthermore this relationship is linear. For instance it has been showed that pressure dependent for the speed of sound of HTPB sample had varied over 40 m/s for 1640 m/s average value. Other cases reviewed in this study were to evaluate the effect of pressure on sound speed for variety composition of HTPB with AL and AP particles. At the end some relevant experiments were done for uncertainty analysis of sound speed measurement. 3% uncertainty which is obtained for the sound speed measurements for HTPB is acceptable in comparison with other scientists` experimental results.

[1] Alain Davenas. 1993. Solid Rocket Propulsion Technology. Ancient Eleve de Ecole Polytechnique Technology and Research Director, SNPE, France. Pergamon Press.

[2] Sutton G., Biblarz O. 2000. Rocket Propulsion Elements. John Wiley and Sons. Canada. 7th ed.

[3] Dauch. 1999.Uncertainty analysis of the ultrasonic technique applied to solid propellant burning rate measurement. M.S. Thesis The School of Graduate Studies. The Department of Mechanical and Aerospace Engineering. The University of Alabama in Huntsville. Huntsville. Alabama.

[4] Razdan M. K., and Kuo. K. K. June 1980. Measurements and Model Validation for CompositePropellants Burning under Cross Flow of Gases. AIAA Journal. Vol. 18,No. 79-1172R. pp. 669-677.

[5] Kamath H., Arora. R., and Kuo. K. June 1982. Erosive Burning Measurements andPredictions for a Highly Aluminized Composite Solid Propellant. 18th JointPropulsion Conference. No. AIAA-82-1111. American Institute of Aeronauticsand Astronautics. Cleveland, Ohio.

[6] R. A. Frederick Jr., J. C. Traineau. 2001. Non-Intrusive Burning RateMeasurement Techniques. University of Alabama in Huntsville .Huntsville. Alabama. & Office National d-EtudesEt de Recherches Aerospatiales .Chatillon, Cedex, France.

[7] Ankarsward B. December 1964. The Hybrid Rocket Engine. Interavia, No. 12. pp. 1838-1840.

[8] Ho P. J. August 1965. Feasibility Study of the Microwave and the Ultrasonic Techniques on the ContinuousMeasurement of Solid Propellant Burning Rates. M.S. Thesis Purdue University. Lafayette.Indiana.

[9] Hale H. J. June 1967. The Demonstration of an Ultrasonic Technique to Measure Solid Propellant Burning Rates Under Actual Combustion Conditions.  M.S. Thesis Virginia Polytechnic Institute. Blacksburg. Virginia.

[10] Wright W. A. May 1969. Ultrasonic Thickness Monitoring Technique. Aerospace Related Technology forIndustry, NASA SP-5075. pp. 69- 73.

[11] J. C. Traineau, and Kuentzmann P. 1984. Ultrasonic Measurements of Solid Propellant BurningRates in Nozzleless Rocket Motors. AIAA Journal of Propulsion and Power. Vol.2,No. 3,198. pp. 215-222.

[12] J. C. Traineau, Prevost M., and Tarrin P. 1994. Experimental Low and Medium FrequencyDetermination of Solid Propellants Pressure-Coupled Response Function. AIAA Paper 94-3043.

[13] Cauty F. September 1995. Measurement of Solid Propellant Response Function at Low Frequency by Means ofUltrasonic Method. Colloque CNES/ONERA/CNRS sur les Ecoulements Propulsifs dans lesSystèmes de Transport Spatial. Bordeaux France.

[14] Seret J., Demarais J. C., Cauty F., and Dupont M. (ONERA). Dec 1992. Application of ThicknessMeasurement Techniques to the Determination of the Ablation Rate of Thermal Insulation. Operation of Segmented Solid Rocket Motors for Space Launchers. Proceedings of the 1stCNES-ONERA Colloquium. Chatillon. France. pp. 21-1.

[15] Cauty F., Demarais J. C., Erades C. h., and Caugant C. July 1997. Internal Insulation and Solid PropellantBehavior Measured by Ultrasonic Method on Solid Rocket Motors. AIAA 97-2994.

[16] Cauty F. 2000. Ultrasonic Method Applied to Full-Scale Solid Rocket Motors. AIAA Journal ofPropulsion and Power. Vol. 16. No. 3. pp. 523-528.

[17] Cauty F., G. Louaze, and C. Erades. 2008. Ultrasound method: Towards the automation of the solid propellant burning rate determination. ONERA. DEFA/PSO. Chemin de la Huniere. 91761 PALAISEAU CEDEX. France.

[18] Cauty F., Demarais J. C., and Erades C. h. 1994. Determination of Solid Propellant Burning RateSensitivity to Initial Temperature by the Ultrasonic Method. Non Intrusive CombustionDiagnostics pp. 642-653.

[19] Cauty F. 1998. Non-Intrusive Measurement of an Energetic Material Regression Rate. AGARD ConferenceProceedings 598. Advanced Non-Intrusive Instrumentation for Propulsion Engines.

[20] Cauty F., and Demarais J. C. July 1990. Ultrasonic Measurement of the Uncured Solid Propellant BurningRate.International Congress of ICT. Karlsruhe.

[21] Cauty F., Demarais J. C., and Erades C. h. 1993. Determination of Solid Propellant Burning RateSensitivity to Initial Temperature by the Ultrasonic Method. International Symposium onSpecial Topics in Chemical Propulsion, Scheveningen, The Netherlands.ONERA TP no. 1993-69.

[22] Cauty F. May 1995. Electronic Device for Ultrasonic Measurements (EDUM) of Regression Rates ofSolid Materials. ONERA Report.

[23] Cauty F. 1997. Solid Propellant Combustion Response Function From Direct MeasurementMethods: a Review of ONERA’s Experience. International Workshop on Combustion Instability ofSolid Propellants and Rocket Motors. Politecnico di Milano.

[24] Korting P. A. O. G., den Hertog E. H., and Schoyer H. F. R. April 1985. Determination of the Regression Rate ofSolid Fuels in Solid Fuel Combustion Chambers by Means of the Ultrasonic Pulse-EchoTechnique. Part 1. The Measurement Technique. Report LR-453. Report PML 1985-C-5. SFCCPublication No. 18, Delft/Rijswijk.

[25] Dijkstra F., Korting P. A. O. G., and van der Berg R. P. July1990. Determination of the Regression Ratein Solid Fuel Ramjets by Means of the Ultrasonic Pulse Echo Method. AIAA Paper.

[26] Korting P. A. O. G., and Schoyer H. F. R. August 1985. Determination of the Regression Rate in Solid FuelRamjets by Means of Ultrasonic Pulse Echo Method. Heat Transfer in Fire and CombustionSystems pp. 347-353.

[27] Korting P. A. O. G., van der Geld C. W. M., Vos J. B., Wijchers T., Nina M. N. R., and Schoyer H. F. R. June 1986. Combustion of PMMA in a Solid Fuel Ramjet. AIAA Paper 86-1401.

[28] Elands P. J. M., Korting P. A. O. G., Dijkstra F., and Wijchers T. July 1988. Combustion of Polyethylene in a Solid Fuel Ramjet, A Comparison of Computational and Experimental Results. AIAA Paper 88- 3043, AIAA/ASME/SAE/ASEE 24th Joint Propulsion Conference. Boston.

[29] Merkx A. W., and van den Berg R. P. August 1986. Instantaneous Solid Fuel Regression RateMeasurements at More than One Location– An Ultrasonic Pulse Echo Multiplexer System.Report LR-501. Report PML 1986-C76, SFCC Publication No. 36. Delft/Rijswijk theNetherlands.

[30] Chiaverini M., Serin N., Johnson D., Lu Y. C., Kuo K. K., and Risha. G. A. July 1996. ThermalPyrolisis of HTPB-Based Solid Fuels for Hybrid Rocket Motor Applications. AIAA Paper 96-2845.

[31] Chiaverini M., Garting G., Lu Y.C., Kuo K. K., Serin N., and Johnson D. 1995. Fuel Decompositionand Boundary layer Combustion Processes of Hybrid Rocket Motors. AIAA Paper 95-2686. SanDiego. CA.

[32] Chiaverini M., Harting G. C., Lu Y. C., Kuo K. K., Serin N., and Johnson D. 1995. Combustion of Solid Fuel Slabs with Gaseous Oxygen in a Hybrid Motor Analogue. 1995. NASATechnical Reports.JANNAF CS/PSHS/EPTS and SPIRITS Joint Meetings. Huntsville. AL.

[33] Chiaverini M., Serin N., Harting G. C., and Kuo K. K. June 1999. Pressure Correction of UltrasonicRegression Rate Measurements of a Hybrid Slab Motor. AIAA Paper 99-2319.

[34] Frederic-Thomas Dauch. 1999. Uncertainty analysis of the ultrasonic technique applied to solid propellant burning rate measurement. M.S. Thesis The School of Graduate Studies. The Department of Mechanical and Aerospace Engineering. The University of Alabama in Huntsville. Huntsville. Alabama.

[35] R. A. Frederick Jr., J. C. Traineau. 2001. Non-Intrusive Burning RateMeasurement Techniques. Technical Report. University of Alabama in Huntsville .Huntsville. Alabama. & Office National d-EtudesEt de Recherches Aerospatiales. Chatillon, Cedex, France.

[36] Dauch, M. D. Moser and R. A. Frederick Jr. 1999. Uncertainty Assessment of the Pulse-Echo Ultrasonic Burning Rate Measurement Technique. Technical Report. The University of Alabama in Huntsville Propulsion Research Center. Alabama.

[37] Di Salvo R., R. A. Frederick Jr. and M. D. Moser. July 2000. Development of the Inert Gas InjectionModulated Motor for Response Function Measurements. AIAA Paper No. 2000-3799.

[38] M. D. Moser, Dauch and McQuade W. August1999. Surface Roughness Effects on Ultrasonic BurningRate Measurements. National Heat Transfer Conference, Paper NHTC 99-0285.

[39] Dauch, M. D. Moser, R. A. Frederick Jr. and Coleman H. W. Dec1998. Uncertainty Assessment ofUltrasonic Measurement of Propellant Burning Rate. CPIA Pub 680. Vol. I. pp. 293-304.

[40] Dauch, M. D. Moser, R. A. Frederick Jr. and Coleman H. W. 1999. Uncertainty Assessmentof Ultrasonic Measurement of Propellant Burning Rate. AIAA Paper 99-2224. 35thAIAA/ASME/SAE/ ASEE Joint Propulsion Conference Joint Propulsion Conference, Los Angeles,CA.

[41] Di Salvo, M. D. Moser and R. A. Frederick Jr. July 1998. Experimental Determination of PressureCoupled Response Function. AIAA Paper 98-3553.

[42] Di Salvo, M. D. Moser and R. A. Frederick Jr. Dec 1998. Experimental Determination of PressureCoupled Response Functions. CPIA Pub 680 Vol. I. pp. 407-414.

[43] Di Salvo, M. D. Moser and R. A. Frederick Jr. 1999. Direct Ultrasonic Measurements of SolidPropellant Combustion Transients. AIAA Paper 99-2223. 35th AIAA/ASME/SAE/ASEE JointPropulsion Conference Joint Propulsion Conference, Los Angeles, CA.

[44] Di Salvo, M. D. Moser, R. A. Frederick Jr. and Dauch. 1999. Direct Ultrasonic Measurement ofSolid Propellant Ballistics. The Review of Scientific Instruments. Vol. 70, No. 11.

[45] Di Salvo, M. D. Moser and R. A. Frederick Jr. July 2000. Development of the Inert Gas InjectionModulated Motor for Response Function Measurements. AIAA Paper 2000-3799.

[46] Di Salvo, M. D. Moser and R. A. Frederick Jr. Nov 2000. Effect of Oxidizer Particle Size onResponse Function. CPIA Pub 701, Vol. I, pp. 615-626.

[47] Di Salvo. 2001. Experimental Measurements of Solid Propellant Response Function. PhDdissertation The University of Alabama in Huntsville. Huntsville. AL.

[48] McQuade W., Dauch, M. D. Moser and R. A. Frederick Jr.  July 1998. Determination of the UltrasonicBurning Rate Technique Resolution. AIAA Paper 98-3555.

[49] McQuade W. March 1998.Ultrasonic Instrument Development for Solid Propellant Burning RateMeasurement. M.S. Thesis. The University of Alabama in Huntsville.

[50] R. A. Frederick Jr. Nichols J. S., and Rogerson J. 1999. Slag Accumulation Measurements in a Strategic Solid Rocket Motor. Journal of Image Processing and Flow Visualization Vol. 3. No. 2.

[51] Dauch. 1999. Uncertainty Analysis of the Ultrasonic Technique Applied to Solid Propellant Burning Rate. M.S. Thesis. The University of Alabama in Huntsville.

[52] Di Salvo, M. D. Moser, and R. A. Frederick Jr. July 1998. Experimental Determination of Pressure Coupled Response Function. AIAA Paper 98-3553.

[53] Makoto K., R. A. Frederick Jr., and Marlow D. M. 2004. Ultrasonic Properties of Propellant Ingredients. AIAA Journal of Propulsion and Power Vol. 20, No. 1.

[54] Krier H., Martin A. O., and Murphy J. J. 1997. Precision Techniques for MeasuringBurning Rates of Solid Propellants during Pressure Transients. 34th JANNAF CombustionSubcommittee Meeting, Vol. 2. pp. 225-236.

[55] Murphy J. J., Chai S., Brdar R., and Krier H. July 2000. Response Function Measurement UsingUltrasonic Technique in and Oscillating Burner. AIAA paper 2000-3797.

[56] Krier H., Murphy J. J., Brdar R., and Chai S. July 2000. Response Function Measurement Using an Ultrasonic Technique in an Oscilliatory Burner. AIAA Paper 2000-3797.

[57] Murphy J. J. August 2000. Unsteady Solid Propellant Combustion: Theory and Experiment. PhD Thesis University of Illinois at Urbana Champaign.

[58] Deepak D., Jeenu R., Sridharan P., and Padmanabhan M. S. 1998. Determination of PressureDependence of Burning Rate in Solid Motors Using Ultrasonic Technique. AIAA Journal ofPropulsion and Power Vol. 14 No. 3.

[59] Deepak D., Jeenu R., Sridharan P., and Padmanabhan M. S. 1998. Application of Ultrasonic Technique for Measurement of Instantaneous Burn Rate of Solid Propellants. Defense Science Journal Vol 48 No 2. pp. 197-204.

[60] Sung-Jin Song, Jin Hong Jeon, Hak-Joon Kim, In-Chul Kim, Ji-Chang Yoo, and Jung YongJung. 2006. Burning Rate Measurement of Solid Propellant Using Ultrasound- Approach and Initial Experiments. Review of Quantitative Nondestructive Evaluation Vol. 25.

[61] Sung-Jin Song, Hak-Joon Kim, Sun-Feel Ko, Hyun-Taek Oh, In-Chul Kim, Ji-Chang Yoo, and Jung Yong Jung. 2008. Measurement of solid propellant burning rates by analysisof ultrasonic fullwaveforms. Journal of Mechanical Science and Technology.

[62] To Kang, Hak-Joon Kim, Sung-Jin Song, Sun-Feel Ko, In-Chul Kim, Ji-Chang Yoo, and Jung Yong Jung. 2009. Uncertainty Analysis of Ultrasonic Methods for Measuring Burning Rate of Solid Propellant. Journal of American Institute of Physics,CP1096, Review of Nondestructive Evaluation Vol 28.

[63] Su-Kyun Jeon, Sung-Jin Song, Hak-Joon Kim, Sun-Feel Ko, Hyun-Taek Oh, In-Chul Kim, Ji-Chang Yoo, and Jung Yong Jung. 2010. Ultrasonic Signal Denoising for Robust Measurement of Solid-Propellant Burning Rates. Journal of propulsion and power Vol. 26, No. 3.

[64] Hyun-Taek Oh, Hak-Joon Kim, Sung-Jin Song, Sun-Feel Ko, In-Chul Kim, Ji-Chang Yoo, and Jung-Yong Jung. 2008. Investigation of Ultrasonic Methods for Measuring Burning Rates of Solid Propellants. Journal of American Institute of Physics, CP975, Review of Nondestructive Evaluation Vol 27.

[65] Louwers J., Gadiot G., Versluis M., Landman AJ., van der Meer T., and Roekaerts D. June 1998. Measurement of Steady and Non-Steady Regression Rates of Hydrazinium Nitroformate withUltrasound. International Workshop on Measurement of Thermophysical and Ballistic Propertiesof Energetic Materials, Milano, Italy.

[66] K. Hasegawa, and K. Hori. 2010. Novel Burning Rate Measurement Technique for Solid Propellant by Means of Ultrasonics. Combustion, Explosion, and Shock Waves Vol. 46. No. 2. pp. 188–195.

[67] Cauty F. July 2004. The Ultrasound Waves: a Measurement Tool for Energetic Material Characterization. ONERA, Palaiseau, France. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 11 – 14.

[68] Chiaverini M., Garting G., Lu Y.C., Kuo K. K., Serin N., and Johnson D. June 1999. Pressure Correction of Ultrasonic Regression Rate Measurements of a Hybrid Slab Motor. 35th AIAA/ASME/SAE/ASEE. Joint Propulsion Conference and Exhibit 20-24.

[69] Optel Company. 2011. Instruction Manual Draft OPCARD 2.0 PCI-bus Ultrasonic Card with Integrated Pulser and Receiver. Optel catalog.

[70] Shantou Institute Ultrasonic Instruments Company. 2011. prob catalog. 77. Jinsha Road. Shantou 515041. Guangdong. China.