تولید کلید لایه فیزیکی برای ارتباطات پهبادها و سنجش پایداری آن در برابر حملات غیرفعال و فعال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / پژوهشکده فناوری ارتباطات، پژوهشگاه ارتباطات و فناوری اطلاعات

2 دانشجوی دکتری جنگ الکترونیک مخابراتی /دانشگاه جامع امام حسین (ع)

3 کارشناس ارشد / دانش آموخته مخابرات امن دانشگاه علم و صنعت ایران

4 عضو هیات علمی / دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی قم

چکیده

ارتباطات بی‌سیم پهبادهاi به دلایلی از قبیل امکان تحرک بالا، هزینه کم، استقرار بر اساس نیاز و نیز بهره‌وری از کانال‌های دید مستقیمii هوا به زمین، علاقه‌مندی بسیاری را در کاربردهای نظامی و تجاری به خود جلب کرده است. با این حال، این مزایا سیستم‌های ارتباطی بی‌سیم پهپاد را در برابر حملات غیرفعال و حملات فعال آسیب‌پذیر می‌کند. در سال‌های اخیر، با افزایش قدرت محاسباتی رایانه‌ها و در نتیجه افزایش تهدیدهای امنیتی، یک راهکار امنیتی نوین و کارآمد به نام امنیت لایه فیزیکی بسیار‌ مورد توجه قرار گرفته است. در این حوزه، یکی از مهمترین این روش‌ها، تولید کلید از ویژگی‌های کانال بی‌سیم است. در این مقاله، با تمرکز بر روی روش‌های مبتنی بر فاز کانال، دو روش عملی تولید کلید از فاز کانال یعنی: 1) روش اول، استفاده از اختلاف فاز یک سیگنال سینوسی با دو فرکانس و 2) روش دوم، به‌کارگیری فاز اولیۀ تصادفی برای سیگنال سینوسی با یک فرکانس، معرفی می‌شوند. نتایج شبیه‌سازی نشان می‌دهد تولید کلید مبتنی بر روش دوم از منظر حملات فعال (حملۀ مرد در میانii و حملۀ پارازیتiv)، عملکرد بهتری نسبت به روش اول دارد. همچنین روش دوم، با تولید کلید با آنتروپی بالا بر چالش ایستایی لینک‌های پهباد غلبه می‌کند. همچنین این روش را از منظر نواحی افشای کلیدv مورد مطالعه قرار می‌دهیم. خواهیم دید که با اجرای ایدۀ کاوش کانالvi بر روی چند فرکانس، درصد نواحی افشای کلید کاهش می‌یابد. نتایج به‌دست آمده در این مقاله، بینش‌های مهندسی مفیدی جهت طراحی و بهینه‌سازی یک لینک امن برای ارتباطات پهباد ارائه می‌دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Physical layer key generation for UAV communication and measuring its resilience against passive and active attacks

نویسندگان [English]

  • Mohammadreza Keshavarzi 1
  • Bahman Madadi 2
  • Ali Rahmanpour 3
  • Ali Kuhestani 4
1 IRAN Telecommunication Research Center
2 Imam Hussain University
3 Iran University of Science and Technology
4 Qom University of Technology
چکیده [English]

The wireless communication of unmanned aerial vehicles (UAVs) has attracted a lot of interest in military and civilian applications for reasons such as the possibility of high mobility, low cost, deployment based on needs, and the efficiency of direct air-to-ground channels. However, these advantages make UAV wireless systems vulnerable to both passive and active attacks. In recent years, with the increase in the computing power of computers and as a result of the increase in security threats, a new and efficient security solution called physical layer security has received much attention. In this field, one of the most important methods is the key generation from wireless channel characteristics. In this paper, by focusing on the key generation from the channel phase, two methods of generating the key from the channel phase are introduced: 1) the first method, using the phase difference of a sinusoidal signal with two frequencies and 2) the second method, choosing the random initial phase for a sinusoidal signal with one frequency. The simulation results show that key generation based on the second method performs better than the first method from the perspective of active attacks (man-in-the-middle attack and jammer attack). Furthermore, we study the second method from the point of view of key disclosure resion. We will see that by implementing the idea of channel probing on multiple frequencies, the percentage of key disclosure region will decrease. The results obtained provide useful engineering insights for the design and optimization of a secure link for UAV communications.

کلیدواژه‌ها [English]

  • UAV security
  • physical layer security
  • secret key generation
  • channel phase
[1]. Y. Zeng, R. Zhang, and T. J. Lim, Wireless Communications with Unmanned Aerial Vehicles: Opportunities and Challenges, IEEE Commun. Mag., Vol. 54, No. 5, pp. 36–42, 2016.
[2]. Shui Wang, Kehan Zhang, Bingcheng Zhu, Wei Wang, Zaichen Zhang, Visible Light Communications for Unmanned Aerial Vehicle: Channel Modeling and Experimental Validation, IEEE Commun. Lett., Vol. 27, No. 6, pp.1530-1534, 2023.
[3]. J. Liang, W. Liu, N. N. Xiong, A. Liu, and S. Zhang, An intelligent and trust uav-assisted code dissemination 5g system for industrial internetof-things, IEEE Trans. Industrial Informatics, Vol. 18, No. 4, pp. 2877–2889, 2022.
[4]. M. Ahmed, H. Shi, X. Chen, Y. Li, M. Waqas, and D. Jin, Socially aware secrecy-ensured resource allocation in d2d underlay communication: An overlapping coalitional game scheme, IEEE Trans. Wireless Commun., Vol. 17, No. 6, pp. 4118–4133, 2018.
[5]. X. Sun, D. W. K. Ng, Z. Ding, Y. Xu, and Z. Zhong, Physical layer security in UAV systems: Challenges and opportunities, IEEE Wireless Commun., Vol. 26, No. 5, pp. 40–47, 2019.
[5] J. Bosbach, J. Pennecot, C. Wagner, M. Raffel, T.H. Lerche and S.T. Repp, Experimental and Numerical Simulations of Turbulent Ventilation in Aircraft Cabins, Energy, Vol. 31. No. 5, pp. 694-705, 2006.
[6]. A. D. Wyner, The Wiretap Channel, J. Bell System Tech., Vol. 54, pp. 1355–1387, 1975.
[7]. D. Abbasi-Moghadam, V. T. Vakili, and A. Falahati, Combination of turbo coding and cryptography in NONGEO satellite communication systems, International Symposium on Telecommunications (IST), 2008, pp. 666-670.
[8]. G. Noubir, On connectivity in Ad-hoc network under jamming using directional antennas and mobility, 2nd Int’l. Conf. Wired and Wireless Internet Commun., 2004.
[9]. A‌. Kuhestani, A. Mohammadi, and M. Mohammadi, Joint relay selection and power allocation in large-scale MIMO systems with untrusted relays and passive eavesdroppers, IEEE Trans. Inf. Forensics Security, Vol 13, No. 2, pp. 341–355, 2018.
[10]. M. Forouzesh, F. Samsami Khodadad, P. Azmi, A. Kuhestani and H. Ahmadi, Simultaneous secure and covert transmissions against two attacks under practical assumptions, IEEE Internet of Things J., Vol. 10, No. 12, pp. 10160-10171, 2023.
[11] M. Ragheb, A. Kuhestani, M. Kazemi, H. Ahmadi and L. Hanzo, RIS-aided secure millimeter-wave communication under RF-chain impairments, IEEE Trans. Veh. Technol., doi: 10.1109/TVT.2023.330745.
[12]. M. Letafati, A. Kuhestani, and H. Behroozi, Three-hop untrusted relay networks with hardware imperfections and channel estimation errors for Internet of Things, IEEE Trans. Inf. Forensics Security, Vol. 15, pp. 2856–2868, 2020.
[13]. M. Ragheb, S. M. S. Hemami, A. Kuhestani, D. W. K. Ng and L. Hanzo, On the physical layer security of untrusted millimeter wave relaying networks: A stochastic geometry Approach, IEEE Trans. Inf. Foren. Sec., Vol. 17, pp. 53-68, 2022.
[14]. J. Zhang, G. Li, A. Marshall, A. Hu and L. Hanzo, A new frontier for IoT security emerging from three decades of key generation relying on wireless channels, IEEE Access, vol. 8, pp. 138406–138446, Jul. 2020.
[15] M. Letafati, A. Kuhestani, K. -K. Wong and M. J. Piran, A lightweight secure and resilient transmission scheme for the Internet of Things in the presence of a hostile jammer, IEEE Internet of Things Journal, Vol. 8, No. 6, pp. 4373-4388, 2021.
[16]. M. Letafati, A. Kuhestani, D. W. K. Ng, and H. Behroozi, A new frequency hopping-aided secure communication in the presence of an adversary jammer and an untrusted relay, IEEE ICC’20 Workshop, Dublin, Ireland, Jun. 2020.
[17]. A. H. Khalili Tirandaz and A. Kuhestani, Security evaluation of mutual random phase injection scheme for secret key generation over static point-to-point communications, Journal of Electronic & Cyber Defense, Oct. 2022.
[18]. K. Ren, H. Su, and Q. Wang, Secret key generation exploiting channel characteristics in wireless communications, IEEE Wireless Communications, Vol. 18, pp. 6-12, 2011.
[19] Q. Wang, H. Su, K. Ren, and K. Kim, Fast and scalable secret key generation exploiting channel phase randomness in wireless networks, in 2011 Proceedings IEEE INFOCOM, pp. 1422-1430.
[20] A. A. Hassan, W. E. Stark, J. E. Hershey, and S. Chennakeshu, Cryptographic key agreement for mobile radio, Digital Signal Processing, Vol. 6, pp. 207-212, 1996.
[21] D. Rife and R. Boorstyn, Single-tone parameter estimation from discrete-time observations, IEEE Trans. Inf. Theory, Vol. 20, No. 5, pp. 591–598, 1974.
[22] S. Eberz, M. Strohmeier, M. Wilhelm and I. Martinovic, A Practical Man-In-The-Middle Attack on Signal-Based Key Generation Protocols, Computer Security – ESORICS, Vol 7459, pp. 235-252, 2012.
[23] C. Feng and L. Sun, Physical layer key generation from wireless channels with non-ideal channel reciprocity: A deep learning based approach, IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 2022, pp. 1-6.
[24] X. Guan, N. Ding, Y. Cai and W. Yang, Wireless key generation from imperfect channel state information: Performance analysis and improvements, IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 2019, pp. 1-6.
[25] G. Epiphaniou, P. Karadimas, D. Kbaier Ben Ismail, H. Al-Khateeb, A. Dehghantanha and K. -K. R. Choo, Nonreciprocity Compensation Combined With Turbo Codes for Secret Key Generation in Vehicular Ad Hoc Social IoT Networks, IEEE Internet of Things Journal, Vol. 5, No. 4, pp. 2496-2505, 2018.