هدایت صریح بازگشت به جو با طراحی مسیر بهینه مقید

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد / مجتمع دانشگاهی هوافضا، دانشگاه صنعتی ملک اشتر

2 عضو هیات علمی / مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک اشتر

چکیده

در این مقاله، روش هدایتی صریحی برای وسیلة بازگشتی که به‌سمت هدفی ثابت در حرکت است ارائه ‌شده است. در این روش، وسیلة بازگشتی در فاز نهایی حرکت خود به‌نحوی هدایت می‌شود که با کمترین میزان خطا نسبت به موقعیت هدف و با زاویه‌ای معین و سرعت بیشینه به هدف اصابت کند. با استفاده از روش دینامیک معکوس فرمان‌های هدایتی استخراج می‌شود. این فرمان‌ها به پارامترهای مسیر و مشتقاتشان وابسته است؛ بنابراین با استفاده از تقریب بیزیه، مسیر مورد نظر طراحی می‌شود، به‌نحوی‌که علاوه بر ارضای قبلی قیود بیان‌شده، قید مربوط به بیشترین شتاب کنترلی را نیز ارضاء می‌نماید. طراحی مسیر با منحنی بیزیه درجة 4 با پنج نقطة کنترلی انجام می‌شود، به‌طوری‌که هرگاه متغیری از حد خود خارج شد، از یک گام قبل از خروج، به‌عنوان نقطة اولیه، منحنی دیگری تولید کرده و این فرایند آنقدر ادامه می‌یابد که مسیر ممکنی تولید شود که در آن تمام محدودیت‌ها ارضاء شده باشند. جهت دستیابی به مسیری که منجر به اصابت به هدف با بیشترین سرعت شود از روش بهینه‌سازی ازدحام ذرات استفاده می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Explicit reentry guidance law by designing optimal and constrained trajectory

نویسندگان [English]

  • Zahra Yekaneh Najafabad 1
  • Reza Esmaelzadeh Aval 2
چکیده [English]

An explicit guidance law for reentry vehicle moving toward a stationary target is presented in this work. the RV has been steered to a target through a trajectory which has the least miss distance and maximum impact velocity. Inverse dynamic approach is used to derive acceleration commands which are related to trajectory parameters, then The trajectory has been designed by using Bezier approximation which satisfies both of final constraints, including final position, direction and velocity, and maximum acceleration. 4th order Bezier curve with five control points is used to design trajectory, if the constraint of maximum acceleration not satisfied in each point of trajectory, new Bezier curve will be designed. During periods of command saturation, the instantaneous Bezier control points vary until sufficient control is available to follow the optimal trajectory. Finally, due to the importance of impact velocity, the particle swarm optimization has been used to to maximize impact velocity

کلیدواژه‌ها [English]

  • reentry
  • explicit guidance
  • inverse dynamics
  • Bezier curve
  • PSO

[1] Z. Shen, On-board three-dimensional constrained entry flght trajectory generation, Digital Repository@ Iowa State University, http://lib.dr.iastate.edu, accessed June 12, 2002.

[2] R. C. Wingrove, Survey of Atmosphere Re-Entry Guidance and Control Methods, AIAA A Publication of the American Institute of Aeronautics and Astronautics, Vol. 1, 1963.

[3] H. Zhou, T. Rahman, W. Chen, Impact angle and impact velocity constrained terminal guidance for stationary target, Aircraft Engineering and Aerospace Technology: An International Journa, Vol. 87, 2015.

[4] P. Lu, Entry Guidance: A Unified Method, Journal of Guidance, Control, and Dynamics, Vol. 37, 2014.

[5] F. Carroll, J.Zvara, guidance and navigation for entry vehicles, national aeronautics and space administration (NASA), 1968.

[6] A. Naghash, R. Esmaelzadeh, M. Mortazavi, R. Jamilnia, Near optimal guidance law for descent to a point using inverse problem approach, science direct, aerospace science and tecnology, pp. 241-247, 2008.

[7] T. Rahman, Z. Hao, C. Wanchun, Bezier approximation based inverse dynamic guidance for entry glide trajectory, IEEE, pp. 1-6, 2013.

[8] A. Ratnoo, D. Ghose, Impact angle constrained interception of stationary targets, Journal of Guidance, Control, and Dynamics, Vol. 31, 2008.

[9] R. Esmaelzadeh, Near optimal reentry guidance law using inverse problem approach, phd thesis, Amirkabir University of Tecnology, 2007. (in persion)

[10] R. Esmaelzadeh, A. Naghash, M. Mortazavi, An Explicit Reentry Guidance Law Using Bezier Curves, The Japan Society for Aeronautical and Space Sciences, Vol. 50, 2008.

[11] D. F. Rogers, J. A. Adams, Space curves, Mathematical elements for computer graphics, 1976.

[12] D. Salomon, Curves and Surfaces for Computer Graphics, U.S.A: Springer, 2006.

[13] S. Das, A. Abraham, A. Konar, Particle Swarm Optimization and Differential Evolution Algorithms: Technical Analysis, Applications and Hybridization Perspectives, Springer-Verlag Berlin Heidelberg, 2008.

[14] P. H. Chen, Particle Swarm Optimization for Power Dispatch with Pumped Hydro, Department of Electrical Engineering, St. John’s University, 2006.

[15] Y. Shi, R. Eberhart, A modified particle swarm, IEEE, 1998.

[16] M. Clerc, J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE transactions on Evolutionary Computation, Vol. 6, 2002.

[17] F. J. Regan, S. M. Anandakrishnan, Dynamics of atmospheric re-entry, Washington: AIAA, 1993.