کاربرد الگوریتم ژنتیک در طراحی و بهینه‌یابی پارامترهای کنترل‌کننده فازی تناسبی - مشتقی (جهت تنظیم سوخت موتور توربوجت)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / دانشکده مهندسی مکانیک، دانشگاه علم و صنعت

2 دانشجوی دکتری / دانشکده مهندسی مکانیک، دانشگاه علم و صنعت

چکیده

در این مقاله با به‌کارگیری الگوریتم ژنتیک، به طراحی و بهینه‌یابی کنترل‌کننده فازی تناسبی - مشتقی جهت تنظیم سوخت موتور توربوجت پرداخته شده است. در ابتدا با بهره‌گیری از روش مدل‌سازی وینرمدلی با ساختار بلوکی جهت شبیه‌سازی عملکرد موتور توربوجت پیشنهاد شده است که این نوع مدل سازی برای اهدافی نظیر طراحی کنترل‌کننده مناسب می‌باشد. در ادامه با توجه به رفتار غیرخطی موتور، کنترل‌کننده فازی اولیه‌ای که قواعد و پارامترهای آن بر اساس اطلاعات تجربی و شناخت قبلی از رفتار موتور تنظیم شده است، طراحی گردید. در پایان با به‌کارگیری الگوریتم ژنتیک، قواعد و پارامترهای کنترل‌کننده فازی اولیه با هدف کاهش میزان مصرف سوخت و همچنین بهبود رفتار سیستم در مود کنترلی گذرا بهینه گردید. نتایج شبیه‌سازی نشان می‌دهد که کنترل‌کننده طراحی شده علاوه بر کاهش میزان مصرف سوخت، قادر است پاسخ زمانی و مشخصه‌های عملکردی سیستم نظیر خطای حالت ماندگار، فراجهش و زمان خیزش را به طور قابل ملاحظه‌ای بهبود بخشد.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Genetic Algorithm in Design and Optimization of Proportional-Derivative Fuzzy Controller to Regulate Turbojet Engine Fuel Flow

نویسندگان [English]

  • Morteza Montazeri 1
  • Ehsan Mohammadi 2
چکیده [English]

This paper presents the design and optimization of proportional-derivative fuzzy controller intended for regulating the fuel flow of a turbojet engine using genetic algorithm. First, with the aim of Wiener modeling approach, a block structure model is proposed for simulating turbojet engine operation. This representation is an appropriate method for control system design. Subsequently, based on the nonlinear nature of the turbojet engines, an initial fuzzy controller is desined which its rules and parameters are tuned in accordance with empirical data and prior knowledge of the engine behavior. Finally, the rules and parameters of the initial controller is optimized with the aim of reducing fuel consumption and improving engine performance in transient mode. Simulation results reveal that the desined controller is capable of reducing fuel consumption as well as improving the engine time response and enhancing the engine performance characteristics like the steady state error, overshoot and rise time.

[1] Mattingly. Jack D., William H. Heiser, and David T. Pratt. 2002. Aircraft Engine Design, Published by American Institute of Aeronautics and Astronautics, Inc, Second Edition.

[2] Zilouchian, A., M. Juliano, T. Healy, and J. Davis. 2000. Design of a fuzzy logic controller for a jet engine fuel system, Control Engineering Practice 8, pp. 873-883.

[3] Watanabe, A., S. M. Olçmen, R. P. Leland, K. W. Whitaker, L. C. Trevino, and C. Nott. 2006. Soft computing applications on a SR-30 turbojet engine, Fuzzy Sets and Systems 157, pp. 3007 – 3024.

[4] Jie M. S., E. J. Mo, and K. W. Lee. 2007. Fuzzy PI Controller for Turbojet Engine of Unmanned Aircraft, Hankuk Aviation University, 200-1, Springer-Verlag Berlin Heidelberg.

[5] Karr, Charles L. 1991. Design of and adaptive fuzzy logic controller using a genetic algorithm, In Proc. of the 4th International Conference on Genetic Algorithms, San Diego, 13.-16., pp. 450–457.

[6] Kinzel, J, F. Klawoon, and R. Kruse. 1994. Modifications of genetic algorithms for designing and optimizing fuzzy controllers, In Proc. 1st IEEE Conference on Evolutionary Computation, Orlando, USA, pp. 28-33.

[7] Bonissone, P. P., P. S. Khedkar, and Y. Chen. 1996. Genetic algorithms for automated tuning of fuzzy controllers: A transportation application, In Proc. 5th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE'96), New Orleans, USA, pp. 674-680.

[8] Lee, S. C. and E. T. Lee. 1974. Fuzzy Sets and Neural Networks, Journal of Cybernetics, 4(2):83-103.

[9] Jang, J-S. Roger. 1993. ANFIS: Adaptive Network-based Fuzzy Infrence System, IEEE transactions on Systems, Man and Cybernetics, 23(3):665-685.

[10] Kulikov, Gennady G. Thompson, Haydn A. 2004. Dynamic Modeling of Gas Turbines, Published by Springer.

[11] Gold, H., and S. Rosenzweig. 1952. A method for estimating speed response of gas-turbine engines, National AdvisoryCommittee for Aeronautics.

[12] Cohen, H., Rogers G. F. C, and Saravanamuttoo H. I. H. 1996. Gas turbine theory, printed by T. J. press padstow cornwall, 4th edition.

[13] Cordon, O., F. Gomide, F. Herrera, F. Hoffmann, and L. Magdalena. 2004. Ten years of genetic fuzzy systems: current framework and new trends, Fuzzy Sets and Systems.

[14] Holland, John H. 1975. Adaptation in Natural and Artificial Systems, the University of Michigan Press.

[15] De Jong, Kenneth. A. 1975. An Analysis of the Behavior of a Class of Genetic Adaptive Systems, PhD dissertation, University of Michigan.

[16] Goldberg, D.E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley.

[17] Cai, L., A. B. Rad, and W. L. Chan. 2007. A Genetic Fuzzy Controller for Vehicle Automatic Steering Control, IEEE transactions on vehicular technology 56 (2).

[18] Holland, J. H., and J. S. Reitman. 1978. Cognitive systems based on adaptive algorithms, Pattern-Directed Inference Systems, Academic Press, New York.

[19] Venturini, Gilles. 1993. A supervised inductive algorithm with genetic search for learning attribute based concepts, In Proc. European Conference on Machine Learning, Vienna.

[20] Smith, S. F. 1980. A learning system based on genetic adaptive algorithms, PhD dissertation, Department of Computer Science, University of Pittsburgh.

[21] Akhenak, A., M. Chadli, J. Ragot, and D. Maquin. 2007. Multiple Model Approach Modeling: Application to a Turbojet Engine, Journal of Engineering and Applied Sciences.

[22] Montazeri-Gh, M. and M. Safarabadi. 2004. Application of fuzzy logic in the design of Turbojet Engine Fuel Control system, 5th Iranian Conference in Fuzzy Systems.

[23] Montazeri-Gh, M. and M. Safarabadi. 2004. Fuzzy-Based Gas Turbine Fuel Control System, CDIC04, China.