ارزیابی عددی ارتعاشات انتقالی در پایداری ماهواره با بوم گرادیان تلسکوپی و تعیین پارامترهای هندسی طراحی با الگوریتم بهینه سازی ازدحام ذرات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگر/پژوهشگاه فضایی ایران-پژوهشکده رانشگرهای فضایی

2 کارشناس پژوهشی/پژوهشگاه فضایی ایران- پژوهشکده رانشگرهای فضایی

3 عضو هیات علمی/ دانشکده مهندسی مکانیک دانشگاه تهران

چکیده

تعیین مشخصات هندسی بوم تلسکوپی برای پایداری ماهواره و کاهش ارتعاشات انتقالی آن از موضوعات بسیار مهمی است که برای طراحی یک بوم پایدارساز ماهواره باید مورد توجه قرار گیرد. در این پژوهش، با توجه به نسبت بالای جرم ماهواره به بوم، بوم به صورت یک تیر یکسرگیردار با روش المان محدود مدل‌سازی شده و جابجایی اولیه‌ای متناسب با شکل مود اول برای آن در نظر گرفته شده است. نیرو و گشتاورهای تکیه‌گاهی تیر با استفاده از روش حل دینامیکی نیومارک برای مدل المان محدود محاسبه شده و با این مقادیر زوایای اویلری ماهواره مورد ارزیابی قرار گرفته که در این پژوهش جابجایی بحرانی تیر که تغییرات جانبی آن می‌باشد، بررسی شده است. برای پایداری، طول بوم باید افزایش پیدا کند در حالیکه برای کاهش ارتعاشات ماهواره طول کوتاه مورد نظر است. با استفاده از الگوریتم بهینه‌سازی چند هدفه، تعارض طول برای دستیابی به مشخصات هندسی مناسب حل شده است. نتایج نشان می‌دهد که پایداری و ارتعاشات انتقالی از تیر به ماهواره بسیار حائز اهمیت است و انتخاب درست هندسه روی این دو موضوع اثر به‌سزایی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical evaluation of transmission vibrations in satellite stability using telescopic gradient boom and determination of geometric design parameters using particle swarm optimization algorithm

نویسندگان [English]

  • Farhad Farhag laleh 1
  • adel Pourtaghi Marzrood 2
  • aghil koma 3
1 researcher/ Iranian Space Research Center-Space Thrusters Research Institute
2 researcher/ Iranian Space research center- space thrusters research institute
3 College of Engineering / Faculty of Mechanical Engineering of Tehran university
چکیده [English]

Determining the geometrical characteristics of the telescopic booms for the stability of the satellite and reducing its transmission vibrations is one of the most important issues that should be considered for designing a satellite stabilization booms. In this study, due to the high ratio of satellite mass to the booms, the booms is modeled as a cantilever beam with finite element method and the initial displacement in accordance with the shape of the first mode is considered for it. The supports forces and torques were calculated using the Newmark dynamic solution method for the finite element model. With these values, the Eulerian angles of the satellite have been evaluated. In this study, the critical displacement of the beam, which is its lateral displacement, has been investigated. For stability, the length of the booms should be increased, while for decreasing the vibrations of the satellite, a short length is desired. Using multi-objective optimization algorithm, the conflict has been resolved to achieve the appropriate geometry. The results show that the stability and vibrations transmitted from the beam to the satellite are very important and the correct choice of geometry has a good effect on these two issues.

کلیدواژه‌ها [English]

  • "Multi-objective Optimization"
  • "Vibration Analysis"
  • "Satellite Dynamics"
  • "Satellite Stability"
  • "Telescopic Booms"
[1] Y. Acar and C. Yavuzyilmaz, Three Axis Attitude Control of RASAT by Magnetic Torquers, in Proceedings of the World Congress on Engineering, 2018, vol. 1.
[2] B. Zhou, Global stabilization of periodic linear systems by bounded controls with applications to spacecraft magnetic attitude control, Automatica, vol. 60, pp. 145-154, 2015.
[3] M. Y. Ovchinnikov, D. Roldugin, V. Penkov, S. Tkachev, and Y. Mashtakov, Fully magnetic sliding mode control for acquiring three-axis attitude, Acta Astronautica, vol. 121, pp. 59-62, 2016.
[4] T. Inamori, K. Otsuki, Y. Sugawara, P. Saisutjarit, and S. Nakasuka, Three-axis attitude control by two-step rotations using only magnetic torquers in a low Earth orbit near the magnetic equator, Acta Astronautica, vol. 128, pp. 696-706, 2016.
[5] N. Suhadis, M. Salleh, and P. Rajendran, Magnetic attitude control torque generation of a gravity gradient stabilized satellite, in IOP Conference Series: Materials Science and Engineering, 2018, vol. 370, no. 1, p. 012032: IOP Publishing.
[6] Y. Wang and S. Xu, Attitude stability of a spacecraft on a stationary orbit around an asteroid subjected to gravity gradient torque, Celestial Mechanics and Dynamical Astronomy, vol. 115, no. 4, pp. 333-352, 2013.
[7] K. Zhou, H. Huang, X. Wang, and L. Sun, Magnetic attitude control for Earth-pointing satellites in the presence of gravity gradient, Aerospace Science and Technology, vol. 60, pp. 115-123, 2017.
[8] Luke ThirkellHibbertHendrik WillemJordaan, Considerations in the design and deployment of flexible booms for a solar sail, Advances in Space Research,Volume 67, Issue 9, 1 May 2021, Pages 2716-2726
[9] Taher Zouaghi, Gravity: Geoscience Applications, Industrial Technology and Quantum Aspect,InTech, first edition, 2018.
[10] J. Wei, H. Tan, W. Wang, and X. Cao, Deployable dynamic analysis and on-orbit experiment for inflatable gravity-gradient boom, Advances in Space Research, vol. 55, no. 2, pp. 639-646, 2015.
[11] F. Hakkak and S. Khoddam, On calculation of preliminary design parameters for lenticular booms, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 221, no. 3, pp. 377-384, 2007.
[12] S. Walker and G. Aglietti, A study of tape spring fold curvature for space deployable structures, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 221, no. 3, pp. 313-325, 2007.
[13] XiaodongFenga, Mohammad S.Miahb, Yaowen Ou, Dynamic behavior and vibration mitigation of a spatial tensegrity beam, Engineering Structures Volume 171, 15 September 2018, Pages 1007-1016.
[14] M.I. Friswell, O. Bilgen, S.F. Ali, G. Litak, S. Adhikari, The effect of noise on the response of a vertical cantilever beam energy harvester, International journal of non-linear mechanics,Journal of applied Mathematics and Mechanic, 20 May 2014.
[15] P. B. Ghaleh, A. Khayyat, Y. Farjami, and A. Abedian, Approximate analytical solutions of an axially moving spacecraft appendage subjected to tip mass, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 228, no. 9, pp. 1487-1497, 2014.
[16] Z. Shen, H. Li, X. Liu, and G. Hu, Thermal shock induced dynamics of a spacecraft with a flexible deploying boom, Acta Astronautica, vol. 141, pp. 123-131, 2017.
[17] M. Mohammadi Moghadam and S. Farsi, Gravity gradient attitude stabilization of a satellite with varying-length boom in circular orbit, (in eng), Modares Mechanical Engineering, vol. 15, no. 5, pp. 329-340, 2015.
[18] P. B. Ghaleh and S. Malaek, On dynamic stiffness of spacecraft flexible appendages in deployment phase, Aerospace Science and Technology, vol. 47, pp. 1-9, 2015.
[19] M. Navabi and M. Barati, Mathematical modeling and simulation of the earth's magnetic field: A comparative study of the models on the spacecraft attitude control application, Applied Mathematical Modelling, vol. 46, pp. 365-381, 2017/06/01/ 2017.
[20] D. L. Logan, A first course in the finite element method. Cengage Learning, 2011.
[21] TingYan, Sritawat Kitipornchai, JieYang Xiao QiaoHe, Dynamic behaviour of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load, Composite Structures, Volume 93, Issue 11, October 2011, Pages 2992-3001
[22] Shuenn-Yih Chang, Studies of newmark method for solving nonlinear systems : (I) basic analysis, Journal of the Chinese Institute of Engineers, Vol. 27, No. 5, pp. 651-662 (2004)
[23] Euler Equations (2010). Available: www.real-world-physics-problems.com/euler-equations.html
[24] J. Goff. (2010). Variable Gravity Research Facility (xGRF). Available: selenianboondocks.com /2010/11/variable-gravity-research-facility-xgrf/
[25] H. Taghdisian, M. R. Pishvaie, and F. Farhadi,   Multi-objective optimization approach for green design of methanol plant based on CO2-efficeincy indicator, Journal of cleaner production, vol. 103, pp. 640-650, 2015.
[26] V. Machairas, A. Tsangrassoulis, and K. Axarli, Algorithms for optimization of building design: A review, Renewable and Sustainable Energy Reviews, vol. 31, pp. 101-112, 2014.
[27] B. C. Cheung, R. Carriveau, and D. S. Ting, Multi-objective optimization of an underwater compressed air energy storage system using genetic algorithm, Energy, vol. 74, pp. 396-404,2014.
[28] AiminZhou, Bo-YangQu, HuiLi, Shi- hengZhao ,Ponnuthurai Nagaratnam Suganthan,QingfuZhang, Multiobjective evolutionary algorithms: A survey of the state of the art, Swarm and Evolutionary Computation Volume 1, Issue 1, March 2011, Pages 32-49
[29] N. Delgarm, B. Sajadi, F. Kowsary, and S. Delgarm, Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO), Applied Energy, vol. 170, pp. 293-303, 2016.
[30] Shota Kikuchi,Yuichi Tsuda,Makoto Yoshikawa and Jun,ichiro Kawaguchi, "Stability Analysis of Coupled Orbit–Attitude Dynamics Around Asteroids Using Finite-Time Lyapunov Exponents, Journal of guidance, control, and dynamic, 4 Mar 2019.
[31] L. Hibbert, H. W. Jordaan, Considerations in the design and deployment of flexible booms for a solar sail, Advances in Space Research, 2020.01.019