انتخاب هدف مأموریت معدن‌کاوی سیارکی بر مبنای طراحی مسیر بهینه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد / دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی

2 عضو هیات علمی / دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

سیارک‌های نزدیک زمین به واسطه منابع معدنی که در خود دارند و با توجه به رشد روز افزون فناوری و نیاز بشر به فلزات کمیاب و مواد معدنی در کانون توجهات قرار دارند. در این مقاله سیارک‌های ریوگو، ایتوکاوا و بنو از سیارک‌های نزدیک زمین به خاطر فاصله مناسبی که با زمین دارند، برای طراحی مسیر رفت و برگشتی بهینه به آن‌ها انتخاب شده‌اند. بهینه‌سازی چندهدفه به همراه اطلاعات جدول نجومی برای طراحی مسیر رفت و برگشتی به کار گرفته شده است که توابع هدف آن شامل تغییر سرعت کل و مدت زمان کل مأموریت است. این مقادیر به کمک الگوریتم ژنتیک نامغلوب برای مسیرهای بین زمین و سیارک‌های نمونه، کمینه گردیدند. در ادامه نتایج به‌صورت نمودارهای پرتو ارائه شده‌اند که نشان‌دهنده مناسب بودن شرایط سیارک بنو نسبت به دیگر سیارک‌های نمونه است. برای صحت‌سنجی این نتایج، جواب‌هایی از نمودار پرتو که حداقل تغییرات سرعت موردنیاز را داشتند با موارد همتای خود از اطلاعات موجود بر روی مرکز داده‌های جی ‌پی ال ناسا مورد مقایسه قرار گرفتند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Target selection for asteroid mining mission based on Optimal trajectory design

نویسندگان [English]

  • Ebrahim Amiri 1
  • Mahdi Jafari Nadoushan 2
1 K N Toosi University of Technology
2
چکیده [English]

Near-Earth Asteroids are attractive targets in terms of the mineral resources they can provide us and the fast technological development and growing human needs for rare metals and minerals. In this paper, Ryugu, Itokawa, and Bennu asteroids are selected from near-Earth asteroids due to their proper distance from Earth to design the optimal round-trip trajectory. Multi-objective optimization along with the ephemeris of these asteroids is used to design outbound and inbound trajectories. The objective functions include the total delta-velocity and the total duration of the mission, these variables are minimized with the help of the Non-dominated Sorting Genetic Algorithm for the trajectories between the Earth and the sample asteroids. In the following, the results are presented in the form of Pareto diagrams. which indicates the suitability of the conditions of Bennu asteroid compared to other sample asteroids. To validate these results, the Pareto diagram answers that had the least delta-velocity were compared with their counterparts from the available information on the NASA JPL data center.

کلیدواژه‌ها [English]

  • asteroid mining
  • Lambert’s problem
  • multi-objective optimization
  • near-Earth asteroids
[1] Elvis M. Prospecting asteroid resources.  Asteroids: Springer; 2013. p. 81-129.
[2] MacWhorter K. Sustainable mining: Incentivizing asteroid mining in the name of environmentalism. Wm & Mary Envtl L & Pol'y Rev. 2015;40:645.
[3] Dallas J, Raval S, Gaitan JA, Saydam S, Dempster A. Mining beyond earth for sustainable development: Will humanity benefit from resource extraction in outer space? Acta Astronautica. 2020;167:181-8.
[4] Angarita JE, Black J. Trajectory Planning Optimization using Genetic Algorithms.  AIAA SPACE 20162016. p. 5357.
[5] Liu J, Zheng J, Li M. Dry mass optimization for the impulsive transfer trajectory of a near-Earth asteroid sample return mission. Astrophysics and Space Science. 2019;364(12):1-14.
[6] Nadoushan MJ, Ghobadi M, Shafaee M. Designing reliable detumbling mission for asteroid mining. Acta Astronautica. 2020;174:270-80.
[7] Rughani R, Barnhart D, editors. Using Genetic Algorithms for Safe Swarm Trajectory Optimization. AIAA Scitech 2020 Forum; 2020.
[8] Di Carlo M, Martin JMR, Gomez NO, Vasile M. Optimised low-thrust mission to the Atira asteroids. Advances in Space Research. 2017;59(7):1724-39.
[9] Morante D, Sanjurjo Rivo M, Soler M. Multi-objective low-thrust interplanetary trajectory optimization based on generalized logarithmic spirals. Journal of Guidance, Control, and Dynamics. 2019;42(3):476-90.
[10] Morante D, Sanjurjo Rivo M, Soler M. A survey on low-thrust trajectory optimization approaches. Aerospace. 2021;8(3):88.
[11] Eskandari MJ, Novinzadeh A, Pazooki F. Optimal design of trajectory to Saturn's moon Enceladus using the evolutionary algorithm (ICA) and comparing the results obtained with the algorithm (PSO). 2014.
[12] Taei H, Hozuri M, Adami A. Monopropellant Propulsion System Design using Multidisciplinary Design Optimization, Sequential Design Method, and Comparing Results. 2020.
[13] Alavi pour M, Nikkhah AA, Roshanian J. Optimal Trajectory Design of an Upper Stage for Satellite Injection into Geostationary Orbit Using Limited Thrust. 2017.
[14] Hellgren V. Asteroid mining: a review of methods and aspects. Student thesis series INES. 2016.
[15] Gerlach CL, editor Profitably exploiting near-Earth object resources. Proceedings of the 2005 International Space Development Conference, National Space Society, Washington DC; 2005.
[16] Yue Y, Shan H, Zhou Z, Wang X. A fast calculation method for asteroid exploration window based on optimal and sub-optimal two-impulse transfer orbits. Acta Astronautica. 2021;186:171-82.
[17] Bazzocchi MC, Emami MR. Study of arjuna-type asteroids for low-thrust orbital transfer. Journal of Spacecraft and Rockets. 2018;55(1):37-48.
[18] Dorrington S. The Trajectory Optimization & Space Logistics of Asteroid Mining Missions: University of New South Wales, Sydney; 2019.
[19] Hein AM, Matheson R, Fries D. A techno-economic analysis of asteroid mining. Acta Astronautica. 2020;168:104-15.
[20] Vergaaij M, McInnes CR, Ceriotti M. Economic assessment of high-thrust and solar-sail propulsion for near-earth asteroid mining. Advances in Space Research. 2021;67(9):3045-58.
[21] Jude MR. Risk Assessment of Space Mining Ventures Using Decision Modeling and Monte Carlo Simulation: The University of North Dakota; 2018.
[22] JPL’s Solar System Dynamics (SSD) https://ssd.jpl.nasa.gov/ [retrieved Nov.2021].
[23] Neves GM, Dos Santos DP, Domingos RC, Formiga JK, editors. Orbital maneuvers for asteroids using genetic algorithm. Journal of Physics: Conference Series; 2019: IOP Publishing.
[24] Schaub H, Junkins JL. Analytical mechanics of space systems: Aiaa; 2003.
[25] Kim P, Park S-Y, Cho S, Jo JH. A Preliminary Impulsive Trajectory Design for (99942) Apophis Rendezvous Mission. Journal of Astronomy and Space Sciences. 2021;38(2):105-17.
[26] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation. 2002;6(2):182-97.
[27] Serrano Laborda C. Trajectory optimization for asteroid mining 2017.
[28] Shirazi A, Ceberio J, Lozano JA. Spacecraft trajectory optimization: A review of models, objectives, approaches and solutions. Progress in Aerospace Sciences. 2018;102:76-98.
[29] “The Japan Aerospace Exploration Agency”, eoPortal, https://global.jaxa.jp/ [retrieved Nov. 2021].
[30] Yamaguchi T, Saiki T, Tanaka S, Takei Y, Okada T, Takahashi T, et al. Hayabusa2-Ryugu proximity operation planning and landing site selection. Acta Astronautica. 2018;151:217-27.
[31] “The National Aeronautics and Space Administration”, eoPortal, https://www.nasa.gov/ [retrieved Nov. 2021].
[32] The JPL Center for NEO Studies (CNEOS) https://cneos.jpl.nasa.gov/  [retrieved Nov. 2021].