بهینه‌سازی ارتفاع مداری یک ماهواره‌بر با بهره‌گیری از کنترل افق محدود غیرخطی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری / مجتمع دانشگاهی برق و کامپیوتر، دانشگاه صنعتی مالک اشتر

2 عضو هیات علمی / مجتمع دانشگاهی برق و کامپیوتر، دانشگاه صنعتی مالک اشتر

چکیده

در این مقاله، بهینه‌سازی افق محدود ارتفاع مداری یک ماهواره‌بر بر اساس کنترل افق محدود غیرخطی ارایه شده است. رویکرد روش پیشنهادی، بهینه‌سازی متغیرهای مسیر پرواز نظیر پارامترهای زاویه حمله و همچنین بهینه‌سازی تراست مراحل برای دست‌یابی به حداکثر ارتفاع مداری است. در این روش، ابتدا مسیر نامی حامل فضایی با بهره‌گیری از روش‌های مختلف بهینه‌سازی نظیر جستجوی الگو، برنامه‌ریزی مربعی متوالی و الگوریتم ژنتیک بدست آمده و با یکدیگر مقایسه شده است. مسیر حاصله، بر اساس شرایط نامی حامل فضایی و با بهینه‌سازی متغیرهای تابع زاویه حمله حاصل شده است. در این روش، با استفاده از روش بهینه‌سازی افق محدود، تراست بهینه در مراحل مختلف با فرض ثابت بودن ضربه کل هر یک از مراحل بدست آمده و ارتفاع مداری بیشینه شده است. انعطاف پذیری این روش در حل مسائل بهینه‌سازی و امکان در نظر گرفتن قیود مختلف مسیر پرواز، از مزایای این روش پیشنهادی افق محدود است. الگوریتم پیشنهادی در بهینه‌سازی ارتفاع مداری یک حامل فضایی بومی بکار رفته و نتایج شبیه‌سازی‌ بیانگر افزایش 24 کیلومتری ارتفاع مداری آن نسبت به شرایط مسیر نامی آن است.

کلیدواژه‌ها


عنوان مقاله [English]

Orbital Optimization of A Satellite Launch Vehicle With A Nonlinear Receding Horizon Control

نویسندگان [English]

  • Mehran Mahdi Abadi 1
  • Nematollah Ghahremani 2
1 Electrical and Control Engineering Department, Malek Ashtar University of Technology
2 Electrical and Control Engineering Department, Malek Ashtar University of Technology
چکیده [English]

In this paper, the finite horizon orbital optimization of a satellite launch vehicle based on nonlinear predictive model is presented. The proposed method optimizes the flight path variables such as the angle of attack parameters as well as the optimization of the trust value of each stage to achieve the maximum orbital altitude. In this method, the nominal path of the space carrier is obtained and compared with different optimization methods such as pattern search, sequential square programming and genetic algorithm. The resulting path is obtained based on the nominal conditions of the space carrier and by optimizing the variables of the angle of attack function. In this method, using the finite horizon optimization method, the optimal trust in each stage is accomplished with assuming that the total specific impact of each stage is constant. The flexibility of this method in solving optimization problems and the possibility of considering different flight path constraints are some of the advantages of this proposed limited horizon method. The proposed algorithm is used to optimize the orbital height of a native space carrier, and the simulation results show a 24 km increase in its orbital height relative to its nominal path conditions.

کلیدواژه‌ها [English]

  • Finite Horizon Optimization
  • Predictive Nonlinear Model
  • Orbital Height
  • Launch Vehicle
[1] B. Suresh and K. Sivan, Integrated Design for Space Transportation System. Springer, 2015.
[2] B. Conway, Spacecarft Trajectory Optimization. Cambridge University Press, 2010.
[3] J. T. Betts, "Survey of numerical methods for trajectory optimization," Journal of guidance, control, and dynamics, vol. 21, no. 2, pp. 193-207, 1998.
[4] F. A. d. S. Mota, J. N. Hinckel, E. M. Rocco, and H. Schlingloff, "Trajectory Optimization of Launch Vehicles Using Object-oriented Programming," Journal of Aerospace Technology and Management, vol. 10, 2018.
[5] S. S. Jeshvaghani and M. Nosratollahi, "Trajectory optimization of satellite launch vehicle with payload maximization", International Conference on Mechanical Engineering, vol. 17, 1388, (in Persian).
[6] R. Chai, A. Savvaris, A. Tsourdos, and S. Chai, Design of Trajectory Optimization Approach for Space Maneuver Vehicle Skip Entry Problems. Springer, 2020.
[7] A. Chowdhury and V. G. Nair, "On the application of particle swarm optimization in minimum time launch vehicle trajectory optimization problem," International Journal of Mechanical and Production Engineering Research and Development 7.5 (2017): 359, vol. 366, 2017.
[8] M. Dileep, S. Kamath, and V. G. Nair, "Particle swarm optimization applied to ascent phase launch vehicle trajectory optimization problem," Procedia Computer Science, vol. 54, pp. 516-522, 2015.
[9] M. Dileep, S. Kamath, and V. G. Nair, "Ascent phase trajectory optimization of launch vehicle using theta-particle swarm optimization with different thrust scenarios," International Review of Aerospace Engineering, vol. 9, no. 6, pp. 200-207, 2016.
[10] L. Brevault, M. Balesdent, and A. Hebbal, "Multi-objective multidisciplinary design optimization approach for partially reusable launch vehicle design," Journal of Spacecraft and Rockets, vol. 57, no. 2, pp. 373-390, 2020.
[11] L. c. Brevault, "Contributions to multidisciplinary design optimization under uncertainty, application to launch vehicle design," 2015.
[12] T. Fujikawa, T. Tsuchiya, and S. Tomioka, "Multidisciplinary Design Optimization of a Two-Stage-to-Orbit Reusable Launch Vehicle with Ethanol-Fueled Rocket-Based Combined Cycle Engines," Transactions of the Japan Society for Aeronautical and Space Sciences, vol. 60, no. 5, pp. 265-275, 2017.
[13] N. Raouf and S. H. Pourtakdoust, "Launch vehicle multi-objective reliability-redundancy optimization using a hybrid genetic algorithm-particle swarm optimization," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 229, no. 10, pp. 1785-1797, 2015.
[14] W. Roh and Y. Kim, "Trajectory optimization for a multi-stage launch vehicle using time finite element and direct collocation methods," Engineering optimization, vol. 34, no. 1, pp. 15-32, 2002.
[15] A. Rao et al., "Article 9 (2 pages)-Corrigendum: Algorithm 902: GPOPS, A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using the Gauss Pseudospectral Method," ACM Transactions on Mathematical Software-TOMS, vol. 38, no. 1, 2012.
[16] J. Roshanian, A. A. Bataleblu, and M. Ebrahimi, "Robust ascent trajectory design and optimization of a typical launch vehicle," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 232, no. 24, pp. 4601-4614, 2018.
[17] L. Grüne and J. Pannek, "Nonlinear model predictive control," Springer, 2017, pp. 45-69.
[18] J. A. Primbs, "The analysis of optimization based controllers," Automatica, vol. 37, no. 6, pp. 933-938, 2001.
[19] L. Grüne, "Economic receding horizon control without terminal constraints," Automatica, vol. 49, no. 3, pp. 725-734, 2013.
[20] S. N. Ha, "A nonlinear shooting method for two-point boundary value problems," Computers & Mathematics with Applications, vol. 42, no. 10-11, pp. 1411-1420, 2001.
[21] R. W. Holsapple, "A modified simple shooting method for solving two-point boundary value problems," Texas Tech University, 2003.
[22] M. A. Patterson and A. V. Rao, "GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming," ACM Transactions on Mathematical Software (TOMS), vol. 41, no. 1, pp. 1-37, 2014, doi: 10.1145/2558904.
[23] F. Liu, T. Chao, S. Wang, and M. Yang, "Trajectory optimization for launch vehicle boost phase based on Gauss Pseudospectral Method," in 2016 35th Chinese Control Conference (CCC), 2016: IEEE, pp. 10910-10914.
[24] S. Yang, T. Cui, X. Hao, and D. Yu, "Trajectory optimization for a ramjet-powered vehicle in ascent phase via the Gauss pseudospectral method," Aerospace Science and Technology, vol. 67, pp. 88-95, 2017.
[25] A. E. Bryson, Applied optimal control: optimization, estimation and control. CRC Press, 1975.
[26] P. Tsiotras and H. J. Kelley, "Drag-Law Effects in the Goddard Problem," Automatica, vol. 27, no. 3, pp. 481–490, 1991, doi: 10.1016/0005-1098(91)90105-B.
[27] N. Indig, J. Z. Ben-Asher, and E. Sigal, "Singular Control for Two-Dimensional Goddard Problems Under Various Trajectory Bending Laws," Journal of Guidance, Control, and Dynamics, vol. 42, no. 3, pp. 609-623, 2019.