طراحی کنترلر مقاوم مبتنی بر تخمین تأخیر زمانی بالگرد سه درجه آزادی به همراه بهره های تطبیقی

نوع مقاله : مقاله پژوهشی

نویسنده

عضو هیات علمی / گروه آموزشی خلبانی، دانشکده مهندسی و پرواز، دانشگاه امام علی (ع)، تهران، ایران

چکیده

در این مقاله یک رویکرد کنترل مقاوم غیر وابسته به مدل به منظور تعقیب موقعیت در بالگرد سه درجه آزادی در حضور انواع عدم قطعیت و اغتشاشات، طراحی شده است. در این کار، طرح کنترل تأخیر زمانی تطبیقی با ایجاد یک سیگنال تأخیر زمانی سبب حذف دینامیک غیر خطی بالگرد، عدم قطعیت‌‌ها و اغتشاشات خارجی می‌شود. هدف از به کارگیری قانون تطبیق در کنترل تأخیر زمانی، تنظیم آنلاین، خودکار و مناسب بهره به منظور افزایش سرعت همگرایی و بهبود عملکرد تعقیب در حضور عدم قطعیت و اغتشاشات است. همچنین به منظور مقاوم بودن در برابر خطاهای تخمین تأخیر زمانی ناشی از بکارگیری سیگنال تاخیر زمانی، از یک کنترل‌کننده‌ی مد لغزشی در ساختار کنترل استفاده شده است. پایداری UUB سیستم حلقه بسته نیز با استفاده از تئوری لیاپانوف اثبات شده است. در انتها اثر بخشی رویکرد کنترلی با استفاده از شبیه‌سازی در حضور اغتشاشات و عدم قطعیت نشان داده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Time delay estimation based robust control of 3-DOF helicopter with adaptive gains

نویسنده [English]

  • M. Abolfazl Mokhtari
Flight and Engineering Department, Imam ALi University, Tehran
چکیده [English]

In this paper, a free model robust control is designed to track the position of three degrees of freedom (3-DOF) helicopter in the presence of a variety of external uncertainties and disturbances. In this work, the adaptive time-delay control eliminates non-linear dynamics of helicopter, uncertainties, and external disturbances by generating a time-delay signal. The purpose of applying the adaptive law in the time-delay control is to online, automated and appropriate adjustment the gains in order to increase the speed of convergence and efficiency in the tracking operation in the presence of fluctuation tolerance. On the other hand, a sliding mode controller is used in the control structure to achieve robust performance against the time-delay estimation (TDE) error due to use of the time-delay signal. The uniformly ultimately bounded (UUB) stability of the closed-loop system has also been proved using Lyapunov stability theory. Finally, the effectiveness of the designed control approach is demonstrated using simulations on a 3-DOF helicopter in the presence of perturbations and uncertainties.

کلیدواژه‌ها [English]

  • Time-delay control
  • 3 degrees of freedom helicopter system
  • Adaptive gains
  • Non-linear robust control scheme
  • Lyapunov theory
[1] M.-D. Hua, T. Hamel, P. Morin, and C. Samson, "Introduction to feedback control of underactuated VTOLvehicles: A review of basic control design ideas and principles," IEEE Control systems magazine, vol. 33, no. 1, pp. 61-75, 2013.
[2] Y. Chen, X. Yang, and X. Zheng, "Adaptive neural control of a 3-DOF helicopter with unknown time delay," Neurocomputing, vol. 307, pp. 98-105, 2018.
[3] X. Wang, Z. Li, Z. He, and H. Gao, "Adaptive Fast Smooth Second-Order Sliding Mode Control for Attitude Tracking of a 3-DOF Helicopter," arXiv preprint arXiv:2008.10817, 2020.
[4] S. K. Choudhary, "LQR based PID controller design for 3-DOF helicopter system," International Journal of Computer, Information, Systems and Control Engineering, vol. 8, no. 8, pp. 1375-1380, 2014.
[5] Y. Zhai, M. Nounou, H. Nounou, and Y. Al-Hamidi, "Model predictive control of a 3-DOF helicopter system using successive linearization," International Journal of Engineering, Science and Technology, vol. 2, no. 10, 2010.
[6] C. P. Bechlioulis and G. A. Rovithakis, "Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance," IEEE Transactions on Automatic Control, vol. 53, no. 9, pp. 2090-2099, 2008.
[7] X. Bu, Y. Xiao, and K. Wang, "A prescribed performance control approach guaranteeing small overshoot for air-breathing hypersonic vehicles via neural approximation," Aerospace Science and Technology, vol. 71, pp. 485-498, 2017.
[8] M. U. Salamci and B. Gökbilen, "SDRE missile autopilot design using sliding mode control with moving sliding surfaces," IFAC Proceedings Volumes, vol. 40, no. 7, pp. 768-773, 2007.
[9] B. Durmaz, M. K. Özgören, and M. U. Salamci, "Sliding mode control for non-linear systems with adaptive sliding surfaces," Transactions of the Institute of Measurement and Control, vol. 34, no. 1, pp. 56-90, 2012.
[10] S. Kurode, S. K. Spurgeon, B. Bandyopadhyay, and P. S. Gandhi, "Sliding mode control for slosh-free motion using a nonlinear sliding surface," IEEE/ASME Transactions on Mechatronics, vol. 18, no. 2, pp. 714-724, 2012.
[11] T. Kiefer, K. Graichen, and A. Kugi, "Trajectory tracking of a 3DOF laboratory helicopter under input and state constraints," IEEE Transactions on Control Systems Technology, vol. 18, no. 4, pp. 944-952, 2009.
[12] A. T. Kutay, A. J. Calise, M. Idan, and N. Hovakimyan, "Experimental results on adaptive output feedback control using a laboratory model helicopter," IEEE Transactions on Control Systems Technology, vol. 13, no. 2, pp. 196-202, 2005.
[13] J. Zhang, X. Cheng, and J. Zhu, "Control of a laboratory 3-DOF helicopter: Explicit model predictive approach," International Journal of Control, Automation and Systems, vol. 14, no. 2, pp. 389-399, 2016.
[14] M. Nishi, M. Ishitobi, and K. Nakasaki, "Nonlinear adaptive control system design and experiment for a 3-DOF model helicopter," Artificial Life and Robotics, vol. 13, no. 1, pp. 50-53, 2008.
[15] F. Kara and M. U. Salamci, "Model reference adaptive sliding surface design for nonlinear systems," IEEE Transactions on Industry Applications, vol. 54, no. 1, pp. 611-624, 2017.
[16] F. Kara and M. U. Salamci, "Controller Design for a Nonlinear 3 DOF Helicopter Model Using Adaptive Sliding Surfaces," in 2019 XXVII International Conference on Information, Communication and Automation Technologies (ICAT), 2019, pp. 1-6: IEEE.
[17] A. Levant, "Higher-order sliding modes, differentiation and output-feedback control," International journal of Control, vol. 76, no. 9-10, pp. 924-941, 2003.
[18] J. A. Moreno and M. Osorio, "A Lyapunov approach to second-order sliding mode controllers and observers," in 2008 47th IEEE conference on decision and control, 2008, pp. 2856-2861: IEEE.
[19] Y. B. Shtessel, I. A. Shkolnikov, and A. Levant, "Smooth second-order sliding modes: Missile guidance application," Automatica, vol. 43, no. 8, pp. 1470-1476, 2007.
[20] Q. Hu and B. Jiang, "Continuous finite-time attitude control for rigid spacecraft based on angular velocity observer," IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 3, pp. 1082-1092, 2017.
[21] K. Youcef-Toumi and O. Ito, "A time delay controller for systems with unknown dynamics," 1990.
[22] T. S. Hsia, T. Lasky, and Z. Guo, "Robust independent joint controller design for industrial robot manipulators," IEEE transactions on industrial electronics, vol. 38, no. 1, pp. 21-25, 1991.
[23] P. H. Chang and J. W. Lee, "A model reference observer for time-delay control and its application to robot trajectory control," IEEE Transactions on Control Systems Technology, vol. 4, no. 1, pp. 2-10, 1996.
[24] J. Lee et al., "An experimental study on time delay control of actuation system of tilt rotor unmanned aerial vehicle," Mechatronics, vol. 22, no. 2, pp. 184-194, 2012.
[25] J.-Y. Park and P.-H. Chang, "Vibration control of a telescopic handler using time delay control and commandless input shaping technique," Control Engineering Practice, vol. 12, no. 6, pp. 769-780, 2004.
[26] S. M. Fazeli, M. Mokhtari, and K. Imani, "Finite Time Sliding Mode Control Design With Time Delay Estimation For 3-DOF Helicopter," presented at the The 18th International Conference of Iranian Aerospace Society, 1398. (In persian فارسی). Available:https:// civilica.com doc/ 1015318/
[27] Y.-X. Wang, D.-H. Yu, and Y.-B. Kim, "Robust time-delay control for the DC–DC boost converter," IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp. 4829-4837, 2013.
[28] S.-j. Cho, M. Jin, T.-Y. Kuc, and J. S. Lee, "Control and synchronization of chaos systems using time-delay estimation and supervising switching control," Nonlinear Dynamics, vol. 75, no. 3, pp. 549-560, 2014.
[29] H.-J. Bae, M. Jin, J. Suh, J. Y. Lee, P.-H. Chang, and D.-s. Ahn, "Control of robot manipulators using time-delay estimation and fuzzy logic systems," Journal of Electrical Engineering & Technology, vol. 12, no. 3, pp. 1271-1279, 2017.
[30] J. Baek, M. Jin, and S. Han, "A new adaptive sliding-mode control scheme for application to robot manipulators," IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3628-3637, 2016.
[31] J. Lan, R. J. Patton, and X. Zhu, "Integrated fault-tolerant control for a 3-DOF helicopter with actuator faults and saturation," IET Control Theory & Applications, vol. 11, no. 14, pp. 2232-2241, 2017.