کنترل فعال ارتعاشات و پایش سلامت به هنگام پنل ترک دار فضاپیمای انعطاف پذیر مجهز به وصله های پیزوالکتریک در مانور وضعیت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / پژوهشگاه هوافضا

2 دانشجوی کارشناسی ارشد / پژوهشگاه هوافضا

چکیده

این مقاله به کنترل فعال ارتعاشات و پایش سلامت پنل ترکدار فضاپیمای انعطافپذیر در مانور وضعیت با استفاده از وصله های حسگر/عملگر پیزوالکتریک و روش فیدبک نرخ کرنش پرداخته است. پنل انعطافپذیر ترک دار با رویکرد تئوری تیر اویلر-برنولی و روش المان محدود مدلسازی شده و معادلات غیرخطی حرکت سیستم کاملاً کوپل صلب-انعطافپذیر با استفاده از روش لاگرانژ استخراج و با روش عددی نیومارک-بتا حل شده است. دو رویکرد، پایش سلامت به صورت آزمون و خطا و با اندازه گیری بیشینه نرخهای کرنش هر المان حین مانور (به صورت بهنگام ) در کنار کنترل ارتعاشات (با اعمال نیروی کنترلی مبتنی بر بیشترین مقادیر نرخ کرنش با تعداد معین و از پیش تعریف شده عملگرهای پیزوالکتریک)، در نظر گرفته شده است. بیشنه نرخهای کرنش با تغییر در شرایط مأموریت و جابجایی ترک در لحظه تغییر کرده و به طور همزمان عملگرهای متناظر فعال میشوند. همچنین به منظور شناسایی رفتار کل سیستم ترکدار، تابع انرژی متشکل از انرژیهای جنبشی و پتانسیل پنلهای انعطافپذیر و پارامترهای وضعیت بدنه صلب با لحاظ ضرایب وزنی مختلف ارزش دهی شده است که معیار مناسبی از عملکرد رویکرد دوم (الگوریتم هوشمند پیشنهادی) می باشد. شبیه سازیها برای مکانهای مختلف ترک و ورودیهای گشتاورهای خارجی وارد بر بدنه صلب فضاپیما در قالب یک مطالعه مقایسه ای در محیط متلب/سیمولینک، معیاری مناسب در تعیین تعداد، مکان عملگرها و کاهش هزینه های توان مصرفی در فضاپیماهای مدرن امروزی در مأموریتهای با دقت بالا میباشد.

کلیدواژه‌ها


عنوان مقاله [English]

Online Active Vibration Control and Health Monitoring of a Cracked Flexible Spacecraft Panels Equipped with Piezoelectric Patches During Attitude Maneuver

نویسندگان [English]

  • milad azimi 1
  • Mohammad Javad Chitgari 2
  • Seyed Hamed Hashemi Mehne 1
1 Iran, Tehran, Shahrake gharb square, Iranzamin Street, Havafaza dead end.
2 Aerospace Research Institute (Ministry of Science, Research and Technology)
چکیده [English]

This paper deals with active vibration control (AVC) and structural health monitoring of a maneuvering flexible spacecraft with a cracked panel using piezoelectric (PZT) sensor/actuator patches and strain rate feedback (SRF) method. The cracked panel is modeled using the Euler-Bernoulli beam theory and the finite element method (FEM). The nonlinear equations of motion of the fully coupled rigid-flexible system are extracted using the Lagrangian formulation and solved with Newmark-β algorithm. Two approaches of structural health monitoring; first, trial and error, and second, maximum strain rates (online measurement) along with AVC (applying control signals based on the maximum values of strain rates to the predefined number, but unknown locations of PZT actuators), are performed. The strain rates change directly with mission conditions and crack locations, and the corresponding actuators are activated simultaneously. Moreover, to identify the dynamic behavior of the whole, cracked system, an energy function with different weighting coefficients is introduced to propose a suitable criterion for the performance evaluation of the second approach. Simulations for different crack numbers and locations and external disturbances as a comparative study (in MATLAB/Simulink) demonstrate suitable criteria to determine the number and locations of actuators and reduce the power costs in modern spacecraft in high-precision missions.

کلیدواژه‌ها [English]

  • Vibrations-based
  • Structural health monitoring
  • Active vibration control
  • Flexible spacecraft
  • Strain rate feedback
[1]    S. Sony, S. Laventure, and A. Sadhu, A literature review of next‐generation smart sensing technology in structural health monitoring, Structural Control and Health Monitoring, Vol. 26, No. 3, pp. e2321, 2019.
[2]    B. Kamsu-Foguem, Knowledge-based support in Non-Destructive Testing for health monitoring of aircraft structures, Advanced Engineering Informatics, Vol. 26, No. 4, pp. 859-869, 2012.
[3]    S. Gholizadeh, A review of non-destructive testing methods of composite materials, Procedia Structural Integrity, Vol. 1, No., pp. 50-57, 2016.
[4]    K. Diamanti and C. Soutis, Structural health monitoring techniques for aircraft composite structures, Progress in Aerospace Sciences, Vol. 46, No. 8, pp. 342-352, 2010.
[5]    Y. Liu, et al., Application of system-identification techniquest to health monitoring of on-orbit satellite boom structures, Journal of Spacecraft and Rockets, Vol. 48, No. 4, pp. 589-598, 2011.
[6]    Y. Zhou, et al. Review on Structural Health Monitoring in Metal Aviation Based on Fiber Bragg Grating Sensing Technology. in 2020 Prognostics and Health Management Conference (PHM-Besançon). 2020, IEEE.
[7]    D. Wu, et al., Health monitoring on the spacecraft bearings in high-speed rotating systems by using the clustering fusion of normal acoustic parameters, Applied Sciences, Vol. 9, No. 16, pp. 3246, 2019.
[8]    L. Rosafalco, et al., Online structural health monitoring by model order reduction and deep learning algorithms, arXiv preprint arXiv:2103.14328, Vol., No., 2021.
[9]    B. Pilastre, et al., Spacecraft Health Monitoring Using a Weighted Sparse Decomposition, in Advances in Condition Monitoring and Structural Health Monitoring. 2021, Springer. p. 159-168.
[10]  M. Li, et al., Online structural health monitoring of rotating machinery via ultrasonic guided waves, Shock and Vibration, Vol. 2018, No., 2018.
[11]  A. Haridas, C.M. Giraldo, and H. Speckmann. Structural Health Monitoring (SHM) Goes to Space. in European Workshop on Structural Health Monitoring. 2020. Springer.
[12]  L. Bull, et al. A probabilistic framework for online structural health monitoring: active learning from machining data streams. in Journal of Physics: Conference Series. 2019. IOP Publishing.
[13]  B. Peeters, J. Maeck, and G. De Roeck, Vibration-based damage detection in civil engineering: excitation sources and temperature effects, Smart materials and Structures, Vol. 10, No. 3, pp. 518, 2001.
[14]  W. Fan and P. Qiao, Vibration-based damage identification methods: a review and comparative study, Structural health monitoring, Vol. 10, No. 1, pp. 83-111, 2011.
[15]  S. Das, P. Saha, and S. Patro, Vibration-based damage detection techniques used for health monitoring of structures: a review, Journal of Civil Structural Health Monitoring, Vol. 6, No. 3, pp. 477-507, 2016.
[16]  G. Comanducci, et al., On vibration-based damage detection by multivariate statistical techniques: Application to a long-span arch bridge, Structural health monitoring, Vol. 15, No. 5, pp. 505-524, 2016.
[17]  A. Alvandi and C. Cremona, Assessment of vibration-based damage identification techniques, Journal of Sound and Vibration, Vol. 292, No. 1-2, pp. 179-202, 2006.
[18]  F. Ksica, Z. Hadas, and J. Hlinka, Integration and test of piezocomposite sensors for structure health monitoring in aerospace, Measurement, Vol. 147, No., pp. 106861, 2019.
[19]  H. Elahi, The investigation on structural health monitoring of aerospace structures via piezoelectric aeroelastic energy harvesting, Microsystem Technologies, Vol. 27, No. 7, pp. 2605-2613, 2021.
[20]  A.A. Basheer, Advances in the smart materials applications in the aerospace industries, Aircraft Engineering and Aerospace Technology, Vol. 92, No. 7, pp. 1027-1035, 2020.
[21]  C. Zhang, et al., Observer based active vibration control of flexible space structures with prescribed performance, JOURNAL OF THE FRANKLIN INSTITUTE, Vol. 357, No. 3, pp. 1400-1419, 2020.
[22]  X. Wang, et al., Active vibration control of smart flexible piezoelectric beam with a tip mass using hybrid FX-VSSLMS algorithm, The Journal of Engineering, Vol. 2019, No. 13, pp. 172-174, 2019.
[23]  Y. Pu, H. Zhou, and Z. Meng, Multi-channel adaptive active vibration control of piezoelectric smart plate with online secondary path modelling using PZT patches, Mechanical Systems and Signal Processing, Vol. 120, No., pp. 166-179, 2019.
[24]  E. Lu, et al., Optimal placement and active vibration control for piezoelectric smart flexible manipulators using modal H 2 norm, Journal of Intelligent Material Systems and Structures, Vol. 29, No. 11, pp. 2333-2343, 2018.
[25]  J. Li, et al., Active vibration control of functionally graded piezoelectric material plate, Composite Structures, Vol. 207, No., pp. 509-518, 2019.
[26]  H. Elahi, The investigation on structural health monitoring of aerospace structures via piezoelectric aeroelastic energy harvesting, Microsystem Technologies, Vol., No., pp. 1-9, 2020.
[27]  G. Wang, Analysis of bimorph piezoelectric beam energy harvesters using Timoshenko and Euler–Bernoulli beam theory, Journal of Intelligent Material Systems and Structures, Vol. 24, No. 2, pp. 226-239, 2013.
[28]  D. Agis and F. Pozo, Vibration-Based Structural Health Monitoring Using Piezoelectric Transducers and Parametric t-SNE, Sensors, Vol. 20, No. 6, pp. 1716, 2020.
[29]  H. Mei, et al., Recent advances in piezoelectric wafer active sensors for structural health monitoring applications, Sensors, Vol. 19, No. 2, pp. 383, 2019.
[30]  M.Y. Bhuiyan, et al., Toward identifying crack-length-related resonances in acoustic emission waveforms for structural health monitoring applications, Structural Health Monitoring, Vol. 17, No. 3, pp. 577-585, 2018.
[31]  M. Abbas and M. Shafiee, Structural health monitoring (SHM) and determination of surface defects in large metallic structures using ultrasonic guided waves, Sensors, Vol. 18, No. 11, pp. 3958, 2018.
[32]  C. Zhang and H. Zhang. Performance enhanced piezoelectric-based crack detection system for high temperature I-beam SHM. in Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2017. 2017. International Society for Optics and Photonics.
[33]  F. Gunawan, et al. Structural health monitoring: Frequency domain analysis of beam with breathing crack. in IOP Conference Series: Earth and Environmental Science. 2021. IOP Publishing.
[34]  R. Zenzen, et al., A damage identification technique for beam-like and truss structures based on FRF and Bat Algorithm, Comptes Rendus Mécanique, Vol. 346, No. 12, pp. 1253-1266, 2018.
[35]  S.M. Newman, Active damping control of a flexible space structure using piezoelectric sensors and actuators. 1992, Naval Postgraduate School Monterey CA.
[36]  R. Weldegiorgis, P. Krishna, and K. Gangadharan, Vibration control of smart cantilever beam using strain rate feedback, Procedia Materials Science, Vol. 5, No., pp. 113-122, 2014.
[37]  A. Meitzler, et al., IEEE standard on piezoelectricity. 1988, Society.
[38]  M. Azimi and G. Sharifi, A Hybrid Control Scheme for Attitude and Vibration Suppression of a Flexible Spacecraft using Energy-Based Actuators Switching Mechanism, Aerospace Science and Technology, Vol., No., 2018.
[39]  H. Tada, P.C. Paris, and G.R. Irwin, The stress analysis of cracks, Handbook, Del Research Corporation, Vol. 34, No., 1973.
[40]  A. Dimarogonas and C. Papadopoulos, Vibration of cracked shafts in bending, Journal of Sound and Vibration, Vol. 91, No. 4, pp. 583-593, 1983.