بررسی تاثیر استفاده نازل مارپیچ و افزایش فشار تزریق بر مشخصات خروجی و آلایندگی‌ محفظه احتراق

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / دانشکده مهندسی هوافضا، دانشگاه امام علی (ع)، تهران

2 دانشجوی دکترا / دانشکده فنی و مهندسی، دانشگاه تهران، تهران

3 کارشناس ارشد / دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین

4 عضو هیئت علمی / پژوهشگاه هوافضا، تهران

چکیده

در مقاله حاضر به بررسی تاثیر استفاده از نازل مارپیچ و افزایش فشار تزریق سوخت مایع بر عملکرد و نشر آلایندگی دوده، اکسید نیتروژن و مونوکسیدکربن محفظه احتراق یک سیستم پیشرانش پرداخته شده است. راهکارهای ارائه‌شده می‌توانند منجر به تغییر شدت قوع کاویتاسیون و مشخصات افشانه سوخت گردند. تاثیر هر کدام یک از راهکارهای پیشنهادشده با کمک مدل عددی سه‌بعدی در نرم افزار ای وی ال فایر، که با داده‌های تجربی موجود در هر قسمت صحت سنجی گشته، بر عملکرد موتور دیزل و تولید آلایندگی آن بررسی شده است. نتایج عددی حاصل نشان می‌دهند که ایجاد خان درون نازل منجر به ایجاد جریان چرخشی افشانه سوخت، افزایش زاویه مخروطی افشانه و شدت توربولانسی درون محفظه احتراق می‌گردد. افزایش زاویه مخروطی افشانه حاصل، عملکرد موتور دیزل را از طریق کاهش مصرف سوخت و افزایش توان و گشتاور تولیدی بهبود بخشیده و میزان تولید آلاینده اکسید نیتروژن و مونوکسید کربن به دلیل ایجاد مخلوط سوخت و هوای بهتر، افزایش شدت توربولانسی و مقدار دمای متوسط درون محفظه احتراق، به مقدار مناسبی کاهش می‌یابد. همچنین افزایش فشار تزریق می‌تواند عملکرد موتور دیزل را بهبود ببخشد. از نکات منفی افزایش فشار تزریق سوخت می‌توان به افزایش میزان تولید آلاینده اکسید نیتروژن اشاره کرد. با افزایش فشار تزریق سوخت از 1350 بار به 2100 بار، مصرف سوخت 38 درصد کاهش و توان و گشتاور تولیدی آن افزایش می-یابد. همچنین در این حالت آلاینده مونوکسید کربن 65 درصد کاهش و آلاینده اکسید نیتروژن 20 درصد افزایش می‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the effect of using a swirl nozzle and increasing injection pressure on the output characteristics and pollution of the combustion chamber

نویسندگان [English]

  • Amirhamzeh Farajollahi 1
  • Farid Bagherpoor 2
  • Reza Firuzi 3
  • Mohammadreza Salimi 4
1 Assistant professor, Department of Engineering, Imam Ali University, Tehran, Iran
2 Ph.D Student, Department of Mechanical Engineering, Tehran
3 Department of Mechanical Engineering, Ghazvin University, Ghazvin, Iran
4 Assistant professor, Aerospace Research Institute
چکیده [English]

In the present study, the effect of using a swirl nozzle and increasing the pressure of liquid fuel injection on the performance and emission of soot, nitrogen oxide and carbon monoxide combustion chamber of a propulsion system is investigated. The proposed solutions can change the intensity of cavitation and fuel spray characteristics.The effect of each of the proposed solutions with the help of a three-dimensional numerical model in EVL Fire software, which has been validated with experimental data in each section, on the performance of the diesel engine and its emissions has been investigated.The numerical results show that the creation of swirl inside the nozzle leads to a rotational flow of the fuel injector, an increase in the spray cone angle and the turbulence intensity inside the combustion chamber. Increasing the resulting spray cone angle improves the performance of the diesel engine by reducing fuel consumption and increasing power and torque, and the production of nitrogen oxide and carbon monoxide pollutants due to a better fuel-air mixture, increased turbulence intensity and average temperature inside the chamber.Combustion is reduced to an appropriate amount. Increasing the injection pressure can also improve the performance of the diesel engine.One of the negative points of increasing fuel injection pressure is the increase in nitrogen oxide production.By increasing the fuel injection pressure from 1350 bar to 2100 bar, fuel consumption decreases by 38% and its power and torque increase. Also in this case, carbon monoxide pollutants decrease by 65% and nitrogen oxide pollutants increase by 20%.

کلیدواژه‌ها [English]

  • Spiral nozzle
  • injection pressure
  • liquid fuel
  • pollution
  • combustion chamber
  • propulsion system
[1] Heywood, J. B., “Internal Combustion Engine Fundamentals”, McGraw-Hill, Inc., New York, 1998.
[2] Firuzi, R., “Combustion optimization using change in nozzle geometry and creating swirly flow", Msc Thesis, Imam Khomeini International University of Technology, 2020 (In Persian).
[3] A. H. Farajollahi, R. Firuzi, Numerical investigation on the effect of creating swirly flow inside the nozzle and injection pressure increase on the cavitation and diesel fuel spray characteristics, Mechanical Engineering, Vol. 51, No. 96, p. 155-164, 2021 (In Persian).
[4] Farajollahi, A., firuzi, R. (2020). 'Numerical investigation on the effect of creating grooves inside the injector nozzle on the diesel and biodiesel engine fuels spray behavior', Aerospace Knowledge and Technology Journal, 9(2), pp. 65-76.
[5] Farajollahi, A., firuzi, R., Rostami, M., salimi, M., bagherpor, F. (2022). 'Numerical investigation on the effect of creating grooves inside the compression ignition injector orifice on spray behavior and atomization quality of diesel and kerosene fuels', Aerospace Knowledge and Technology Journal, 10(2), article in press.
[6] Zuo Y. S., Guo X. L, Chuan C., Yu S. Y. and Guo X. G., Numerical Investigation on Effects of Nozzle’sGeometric Parameters on the Flow and the CavitationCharacteristics within Injector’s Nozzle for a High-PressureCommon-Rail DI Diesel Engine. Energy Conversion andManagement, Vol. 89, pp. 843-861, 2015.
[7] Esmaelnajad, R., Shervani-Tabar, M. T., Jafari, M., Razavi, S. E., “Numerical study on the effectsof different injection patterns in an annulus injector on the performance of a diesel engine", Modares Mechanical Engineering, Vol. 18, No. 02, p. 423-433, 2018 (In Persian).
[8] A. H. Farajollahi, R. Firuzi, M. Rostami & A. Mardani, Numerical study on the effects of creating rotationary flowinside the injector nozzle and changing fuel injection angle
on the performance and emission of caterpillar diesel engine,Journal of the Brazilian Society of Mechanical Science and Engineering, Vol. 44, No. 3,pp. 1-17, 2022.
[9] Hosseini, S. M., Ahmadi, R., Mohebi, M., “3D Simulation of Performance and Pollution of Hydrogen-Diesel Combustion in Heavy Duty Engine", Modares Mechanical Engineering, Vol.17, No. 03, p. 177-186, 2017 (In Persian).
[10] Hossainpour, S., Rahhagh, H., “Numerical Investigation on the effect of split injection on performance and emission of direct injection diesel engine", Msc Thesis, Sahand University of Technology, 2004 (In Persian).
[11] A. H. Farajollahi, R. Firuzi, M. Rostami & F. Bagherpoor, Consideration of the effects of
increasing spray cone angle andturbulence intensity on heavy-dutydiesel engine pollution and specificoutputs using CFD,International Journal of Engine Researh, Article in Press, 2022.
[12] Nishida, K., Zhang, W., Manabe, T., “Effects of micro-hole and ultra-high injection pressure on mixture properties of diesel spray", SAE International, 2007.
[13] Farajollahi, A., Firuzi, R., Salimi, M., Rostami, M. (2021). Numerical study on the effects of nozzle geometry and creating swirly flow inside the injector nozzle on the performance of an engine. Journal of Space Science and Technology, article in press, doi: 10.30699/jsst.2021.249117.1303.
[14] Farajollahi, A.H., Firuzi, R., Pourseifi, M., Mardani, A., and Rostami, M., “Numerical investigation of the effect of swirl and needle lift profile change on the diesel fuel spray behavior", Journal of Engine Research, Vol. 54, pp. 25-38, 2019 (In Persian).
[15] Avl List GmbH. AVL Fire v. 2013, CFD solver, Eulerian multiphase, 2013.
[16] Avl List GmbH. AVL Fire v. 2013, CFD solver, Spray, 2013.
[17] C. Schugger, U. Renz, “Experimental investigations on the primary breakupzone of high pressure diesel sprays from multiorifice nozzles”, in: ICLASS, Europe 03, 2003.
[18] M. Mhlbauer, Modelling wall interactions of a high-pressure, hollow cone spray, PhD thesis, Technical University of Darmstadt, 2009.
[19] R.H. Perry, and D.W. Green, Perry's chemical engineer's handbook, McGraw-Hill, 1997.
[20] Avl List GmbH. AVL Fire v. 2013, CFD solver, Combustion, 2013.
[21] Avl List GmbH. AVL Fire v. 2013, CFD solver, Emmision, 2013.
[22] Postrioti L, Grimaldi CN, Ceccobello M, Di Gioia R, Diesel common rail injection system behavior with different fuels, SAE Technical paper 2004-01-0029, 2004.
[23] Tatschl R. 3D-CFD simulation of IC-engine flow, mixture formation and combustion with AVL FIRE. Combustion Engines Development, Springer Berlin Heidelberg, pp. 601–630, 2012.