تعیین پاسخ خستگی تیر مدور کامپوزیتی با به‌کارگیری یک مدل نوین آسیب کوپلی پیشرو

نوع مقاله : مقاله پژوهشی

نویسنده

عضو هیات علمی / مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک اشتر

چکیده

محاسبات مربوط­به پاسخ خستگی ساختارهای کامپوزیتی، از طرفی با چالش وجود مدل­های نه­چندان کارآمد و از طرف دیگر با هزینه­های گزاف در اجرای آزمایشات متعدد با پیچیدگی‌های عملی و نیاز به تجهیزات پیشرفته و دقیق مواجه ­است. از این ­منظر، توسعه و تکامل هرچه­ بیشتر مدل­ها در تعیین پاسخ خستگی المان­ها و سازه­ها بسیار ارزشمند است. در این مقاله، ضمن ارائة مدل­ کوپلی نوین آسیب از ارزیابی خستگی، پاسخ خستگی تیر مدور کامپوزیتی مشخصه­سازی شده ­است. با تعریف یک متغیر آسیب سیکلی تابع مکان، رابطة پاسخ مکانیکی با متغیر آسیب از طریق مدل مکانیک آسیب پیوسته تعیین شده ­است. در ادامه از طریق کوپل‌نمودن متغیر آسیب با یک مدل آسیب ­موضعی و تئوری اصلاح‌شدة تیر مدور با ترم­های غیرخطی، محاسبة پیشرفت موضعی آسیب با هر سیکل بارگذاری هر نقطه از تیر میسر شده ­است. مقادیر ثابت معرفی­شده در روابط مدل، از طریق انجام تعداد بسیار معدودی آزمایش تحت بارگذاری­های نوسانی دامنة ثابت تا تعداد محدودی سیکل به‌دست آمده ­است. نتایج ­نهایی حاصل از طریق محاسبات ­مدل، تطابق رضایت­بخشی با نتایج تجربی نشان می­دهد. در نتیجه کارآمدی فرایند ارائه‌شده، کاهش قابل ملاحظة تعداد آزمایشات مورد نیاز و در نهایت کاهش هزینه و زمان لازم میسر شده ­است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of fatigue response of composite circular beam through a new coupled progressive fatigue damage model

نویسنده [English]

  • Mahmood Zabihpoor
Assistant Professor, Malek Ashtar University of technology, Tehran
چکیده [English]

Fatigue behavior of fiber reinforced composites is still difficult to analyze or understand to be determined. It is due to various parameters affecting and their complicated interactions which come from the constituents’ physical and mechanical behavior. Hence, conducting experiments and developing fatigue models are necessary in determination of fatigue behavior in many cases. On the other hand, complicated behaviors lead the application of composite materials to be accomplished with a number of experiments and/or including high safety factors in design calculations in both the process may not be cost effective. This paper introduces a new algorithm and model to determine fatigue response of damaged circular composite beam. The results are evaluated by experimental results. By using the proposed model, the number of experiments and the time needed to determine fatigue behavior of damaged circular beams are significantly reduced. To determine the constants introduced in the local fatigue damage model, cyclic tests are performed up to limited load cycles. The predicted results by the model and obtained from the experiments represent satisfactorily good agreements.

کلیدواژه‌ها [English]

  • fatigue
  • circular composite beam (CCB)
  • continuum damage mechanics (CDM)
  • beam stiffness
  • local damage model
[1] F. Sidorof, Damage Mechanics and its Application to Composite Materials, Mechanical Characterization of Load Bearing Fiber Composite Laminates, Proceedings of the European Mechanics Colloqium, 1984.
[2] B. Harris, Fatigue Behavior of Polymer-based Composites and Life Prediction Method, AIB-Vincotte Leestoel, 2maat 1995, Belgium, Nationaal Fonds Voor Wetenshappelijk Onderzoek, 28p, 1985.
[3] F. Sidorof, B. Subagio, Fatigue Damage Modeling of Composite Materials from Bending Tests, proceedings of Sixth International Conference on Composite Materials (ICCM-VI) & Second European Mechanics Colloqium, 1987.
[4] J. A. Naim, S Hu., the Initiation and Growth of Delamination Induced By Matrix Microcracks in Laminated Composites, International Journal of Fracture, Vol.57.pp.1-24, 1992.
[5] J. W. Hearle, R. E. Hobbs, M. S. Overington and S. J. Banfield, Modeling Axial Compression Fatigue in fiber Ropes, Tension Technology International Ltd (TTI Ltd), 95-RH-02, Lloyds Wharf, 2 Mil Street, London, SE1 2BD, 1995.
[6] L. V. Griffin, J. C. Gibeling, B. Martin, V. A. Gibson, S. M. Stover, Model of Flexural Fatigue damage accumulation for Cortical Bone, J. Orthop. Res., pp. 607-614, 1997.
[7] K. L. Reifsnider, Some fundamental aspects of fatigue and fracture response of composite materials, 14th annual society of engineering science, 1997.
[8] www.airforce-technology.com/projects (accessed Dec 31, 2018).
[9] J. M. Starbuk, Stress Analysis of Laminated Composite Cylinders under Non-Axisymmetric loading, International SAMPE Tech. Confer., Vol. 31, No. 15-604, 1999.
[10] A. Bhattacharyya, E. J. Appiah, On the Exact Solution of Elasto-Plastic Response of an Infinitely Long Composite Cylinder during Cyclic Radial Loading, Journal of Mech. Phys. Solids, Vol. 48, No. 5, pp. 1065-1092, 2000.
[11] Z. M. Huang., Ultimate Strength of Composite Cylinder Subjected to three point bending: correlation of beam theory with experiment, Composite Structures, 2004.
[12] S. Deng, L. Ye., Influence of Fiber-Matrix Adhesion on Mechanical Properties of graophite/epoxy Composites: I. Tensile, Flexure and Fatigue Properties, Journal of Reinforced Plastics and Composites, Vol. 18, pp. 1021-1040, 1999.
[13] W. Van Paepegem, J. Degrieck, Finite Element Approach for Modelling Fatigue Damage in fiber-reinforced Composite Material, Composites Part B, Vol. 32, No.7, pp. 575-588, 2001.
[14] M. M. Shokrieh, F. Taheri-Behrooz, Fatigue Life Evaluation of Unidirectional Composites by Using Residual Strain Energy, Journal of Polymer Science and Technology, Vol. 21, No. 1, pp. 19-26, 2008.(in Persian).
[15] M. H. Sabour, B. Ahmadi Moghaddam, M. F. Foghani, International Fatgiue and Fracture Responses of Polymer Composites by using Phases Groups, Proceedings of 16th Annual Iranian International Conference on Mechanical Engineering, ISME16-598, 2008, http:www.civilica.com/paper-ISME16-ISME16_598.html.(in Persian).
[16] W. Yao, J. Renard, N .A. Himmel, Fatigue Behaviour of Fiber Reinforced Polymers, Experiments and Simulations, Fifth International Conference on Fatigue of Composites(ICFC5), Nanjing University of Aeronautics & Astronautics in Nanjing (NUAA), China, October, 16-19, 2010.
[17] N. K. Kar, E. Barjasteh, Y. Hu, S. R. Nutt, Bend Fatigue of Hybrid Composite Rods, Composites Part A, Vol. 42, No. 3, pp. 328-336, 2011.
[18] P. Huang, G. W. Liu, X. Guo, H. Zhou., X. Zheng, Faigue Life Prediction of RC Beams Strengthened CFRP under Cyclic Bending Loads, Acta Mechanica Solid Sinica, Vol. 26, No. 1, pp. 46-52, 2013.
[19] M. khanmohammadi, I. Ahmadi, Progressive Damage analysis of Laminated Composite Plate Subjected to Bending Fatigue, MME Journal, Vol. 15m No. 2, pp. 72-80, 2015. (in Persian)
[20] T. J. Adam, P. Horst, Experiment of the Very High Cycle Fatigue in GFRP [90/0]S Cross-Ply Specimens Subjected to High-Frequency Four-Point Bending, Composites Science and Technology, Vol. 101, pp. 62-70, 2014.
[21] J. Xie, A. Waas, M. Rassaian, Closed form solutions for cohesive zone, American Society for Composites, 2015.
[22] H. Kruger, R. Rolfes, A physically based fatigue damage model for fiber-reinforced plastics under loading, International Journal of Fatigue, Vol. 70, pp. 241-251, 2015.
[23] C. Hou., Y. Zhou, X. Wan., M. Zhao, A fatgiue damage model for failure analysis of single-lap Multi-Bolt Joints, American Society for Composites, American Society of Composites-30th Technical Conference, 2015.
[24] E. Fang, X. Cui.and J. Lua, Comparative Composite Fatigue Damage Models for Life Prediction of Laminated Composite Structures, American Society for Composites, American Society of Composites, 30th Technical Conference, 2015.
[25] H. Madhusoodanan, Numerical investigation of damage behavior of GFRPs in the very high cycle regime, 21st European Conference on Fracture, ECF21, 20-24 June 2016, Catania, Italy.
[26] B. Suresh Kumar, K. Phaneendra Kumar, N. Srinvasa Babu, Survey of flexural fatigue testing by fiber reinforced polymer composites, International Journal of Engineering Computational Research and Technology, Vol. 1, Issue 1, pp. 1-8, 2016.
[27] Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulations Materials, ASTMD790-15e2, 1998.
[28] Standard Test Method for Flexural Properties of Polymer matrix Composite Materials, ASTM, D7246M, 2007.
[29] Standard Test Method for Ignition loss of Cured Reinforced Resins, ASTM D 2584-11, 2007.