تحلیل الاستیک درام اسپول دوار FGM کمپرسور محوری در موتور توربین گاز هوایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک اشتر، ایران

2 دانشجوی دکتری / دانشکده فنی و مهندسی، دانشگاه اصفهان، ایران

چکیده

در این پژوهش حل تحلیلی دقیقی برای درام اسپول کمپرسور محوری یک موتور توربین گاز جهت محاسبه تنش‌ها، کرنش‌ها و جابجایی‌ها انجام شده است. تحلیل انجام شده در دو حالت مختلف یکی درام از جنس همگن و دیگری ماده هدفمند (FGM) تحت نیروی گریز از مرکز ناشی از دوران و بارگذاری یکنواخت شعاعی در سطوح داخلی و خارجی انجام گرفته است. در حالت FGM خواص ماده شامل مدول یانگ و چگالی در راستای شعاع اسپول متغیر هستند. تنش‌ها و جابجایی‌های حاصل برای ماده همگن و ماده FGM با ضرایب غیرهمگن مختلف محاسبه شده است. نتایج نشان می‌دهند استفاده از ماده‌ FGM با ضریب مناسب نسبت به همگن، می‌تواند منجر به بهبود قابل توجه ضریب اطمینان و کاهش جابجایی­ها، کرنش‌ها و تنش‌های اسپول مدنظر گردد. از سوی دیگر انتخاب ضریب  FGM نامناسب می‌تواند باعث کاهش ضریب اطمینان و حتی شکست در سازه گردد. برای اسپول خاص بررسی شده، تنش‌های ایجاد شده در اسپول FGM برای حالتی که ضرایب غیرهمگن منفی در نظر گرفته شده است، کمتر از حالت همگن بوده و باعث شکست سازه می‌شود، در حالی‌که ضریب اطمینان هنگام استفاده از ضرایب مثبت نسبت به حالت همگن بهبود و جابجایی‌ها کاهش یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

Elastic analysis of the rotating FGM spool drum of the axial compressor in aero gas turbine engine

نویسندگان [English]

  • Sahram Yousefi 1
  • Behrooz Shahriari 1
  • Mohammad soheil Sadeghinezhad 2
1 Associate professor / Department of Mechanical Engineering, Malek Ashtar University of Technology, Iran
2 Ph.D. Candidate / Department of Engineering, University of Isfahan, Iran
چکیده [English]

In this paper, an exact analysis of an axial compressor’s spool of a gas turbine engine has been presented to calculate stresses, strains and displacements. Spool analysis is investigated for both homogeneous and functionally graded material (FGM) states and spool is subjected to centrifugal force and uniform radial loadings at internal and external surfaces. In FGM state, material properties including Young's modulus and density considered variable along the radius direction. Because the Poisson’s ratio variation ranges are insignificant, it considered constant for all states. Stresses, strains and displacements for both homogeneous and FGM with different non-homogeneous coefficients has been calculated. The results shown that using FGM material with suitable non-Homogeneous coefficient can lead to significant improvement in spool’s safety factor and reduction of displacements, strains and stresses in comparison with homogeneous state. On the other hand, using inappropriate FGM coefficients can lead to safety factor reduction and even structure failure. For particular investigated spool, calculated stresses in FGM with negative coefficients are less than homogeneous state and can cause failure in spool, while improvement in safety factor and displacements reduction observed using FGM with positive coefficients in comparison with homogeneous state.

کلیدواژه‌ها [English]

  • Aero Gas Turbine Engine
  • Axial Compressor
  • Rotating Spool Drum
  • FGM
  • Elastic Analysis
[1] A. E. H. Love, Mathematical Theory of Elasticity, pp. 489-504, Dover Publication, 1994.
[2] L. D. Landau, E. M. Lifshitz, J. B. Sykes, W. H. Reid, E. H. Dill, Theory of elasticity, pp. 44-50, PhT, 1960.
[3] A. Nadai, Theory of flow and fracture of solids, McGraw-Hill Book Co., 1950.
[4] E. E. Sechler, Elasticity in engineering, Dover Publications Inc., 1969.
[5] S. Timoshenko, J. N. Goodier, Theory of Elasticity, Third Edition, McGraw-Hill, 1970.
[6] E. Volterra, J. H. Gaines, Advanced strength of materials, Prentice-Hall, 1971.
[7] S. R. Schmid, B. J. Hamrock, B. O. Jacobson, Fundamentals of machine elements: SI version, CRC Press, 2014.
[8] E. J. Hearn, Mechanics of Materials 2: The mechanics of elastic and plastic deformation of solids and structural materials, Elsevier, 1997.
[9] M. Z. Nejad, P. Fatehi, Exact elasto-plastic analysis of rotating thick-walled cylindrical pressure vessels made of functionally graded materials, International Journal of Engineering Science, Vol. 86, No.1, pp. 26-43, 2015.
[10] Jr. P. G. Hodge, M. A. Balaban, Elastic—plastic analysis of a rotating cylinder, International Journal of Mechanical Sciences, Vol. 4, No. 6, pp. 465-476, 1962.
[11] F. Rooney, M. Ferrari, Tension, bending, and flexure of functionally graded cylinders, International Journal of Solids and Structures, Vol. 38, No. 3, pp. 413-421, 2001.
[12] N. Tutuncu, M. Ozturk, Exact solutions for stresses in functionally graded pressure vessels, Composites Part B: Engineering, Vol. 32, No. 8, pp. 683-686, 2001.
[13] J. Q. Tarn, Exact solutions for functionally graded anisotropic cylinders subjected to thermal and mechanical loads, International Journal of Solids and Structures, Vol. 38, No. 46, pp. 8189-8206, 2001.
[14] Z. Q. Cheng, S. Kitipornchai, Exact bending solution of inhomogeneous plates from homogeneous thin-plate deflection, AIAA journal, Vol. 38, No. 7, pp. 1289-1291, 2000.
[15] M. Jabbari, S. Sohrabpour, M. R. Eslami, Mechanical and Thermal Stresses in a Functionally Graded Hollow Cylinder Due to Radially Symmetric Loads, International Journal of Pressure Vessels and Piping, Vol. 79, No. 7, pp. 493-493, 2002.
[16] W. Mack, Rotating Elastic-Plastic Tube with Free Ends, International Journal of Solids and Structures, Vol. 27, No. 11, pp. 1461-1476, 1991.
[17] Y. Anani, G. H. Rahimi, Stress Analysis of Rotating Cylindrical Shell Composed of Functionally Graded Incompressible Hyperelastic Materials, International Journal of Mechanical Sciences, Vol. 108, No. 1, pp. 122-128, 2016.
[18] Z. Q. Cheng, S. Kitipornchai, Exact bending solution of inhomogeneous plates from homogeneous thin-plate deflection, AIAA journal, Vol. 38, No. 7, pp. 1289-1291, 2000.
[19] M. Z. Nejad, A. Afshin, Thermoelastic transient response of rotating thick cylindrical shells under general boundary conditions, International Research Journal of Applied and Basic Sciences, Vol. 4, No. 9, pp. 2796-2809, 2013.
[20] C. O. Horgan, A. M. Chan, The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials, Journal of Elasticity, Vol. 55, No. 1, pp. 43-59, 1999.
[21] M. J. Khoshgoftar, G. H. Rahimi, M. Arefi, Exact solution of functionally graded thick cylinder with finite length under longitudinally non-uniform pressure, Mechanics Research Communications, Vol. 51, No. 1, pp. 61-66, 2013.
[22] M. Ghannad, G. H. Rahimi, M. Z. Nejad, Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials, Composites Part B: Engineering, Vol. 45, No. 1, pp. 388-396, 2013.
[23] M. Z. Nejad, M. Jabbari, M. Ghannad, A semi-analytical solution for elastic analysis of rotating thick cylindrical shells with variable thickness using disk form multilayers, The Scientific World Journal, 2014.
[24] M. H. Jalali, B. Shahriari B, Elastic Stress Analysis of Rotating Functionally Graded Annular Disk of Variable Thickness Using Finite Difference Method, Mathematical Problems in Engineering, 2018.
[25] B. Shahriari, M. Jalali, M. R. Karamooz Ravari, Vibration analysis of a rotating variable thickness bladed disk for aircraft gas turbine engine using generalized differential quadrature method, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 23, No. 14, pp. 2739-2749, 2017.
[26] B. Shahriari, Sh. Yousefi, M. Tajdari, M. R. Karamooz Ravari, Optimum design of the turbine blisk of a mini-turbojet engine, Aerospace Knowledge and Technolog Journal, Vol. 4, No. 1, pp. 83-98, 2015.
[27] V. Vullo, F. Vivio, Rotors: Stress analysis and design, Springer Science & Business Media, 2013.