تحلیل عملکرد پروازی یک پرنده مهاجر به کمک معادلات مکانیک پرواز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی / گروه مهندسی مکانیک، واحد نجف‌آباد، دانشگاه آزاد اسلامی، نجف‌آباد، ایران

2 کارشناس / گروه مهندسی مکانیک، واحد نجف‌آباد، دانشگاه آزاد اسلامی، نجف‌آباد، ایران

3 عضو هیات علمی / مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک اشتر

چکیده

مکانیزم پرواز یک پرنده تا حد زیادی مشابه یک هواپیما است؛ چرا که هر دو از قوانین آیرودینامیکی یکسانی تبعیت می­کنند. برای پرندگان مهاجر که دارای عدد رینولدز نسبتاً بالاتری در هنگام پرواز هستند، این تشابه بسیار زیاد است. هدف این مقاله، تحلیل عملکرد پروازی پرندگان به کمک معادلات مکانیک پرواز و مقایسه این مدل با نتایج پرواز آنها است تا به کمک آن بتوان روش­های مورد استفاده را اعتبارسنجی نمود و در آینده مشخصات عملکردی پهپادهای بالزن را بدست آورد. برای این منظور، به بررسی عملکرد پروازی غاز شمالی (گونه­ای از پرندگان مهاجر) پرداخته می­شود: ابتدا پرواز پرندگان مهاجر مدلسازی می­شود. پس از آن، توان شیمیایی و مکانیکی پرنده بدست آمده و تحلیل می­گردد. سپس، ضمن استخراج روابط مناسب عملکرد پرواز، چندین متغیر عملکردی مهم همچون ضریب بازدهی آیرودینامیکی، نرخ اوج­گیری، گرادیان اوج­گیری، محدوده­ی بهینه سرعت پرواز و برد پروازی کسب می­شود. در نهایت، اثر تغییر ارتفاع و وزن پرنده و همچنین اثر تغییرات دما بر این متغیرهای عملکردی مورد مطالعه قرار می­گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Flight performance analysis of a migratory bird using flight mechanics equations

نویسندگان [English]

  • Seyed Amin Bagherzadeh 1
  • Elnaz Raeisi 2
  • hamid reza ebrahimi kebria 3
1 Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
3 researcher /malek-e-ashtar university of technology
چکیده [English]

The flight mechanism of a bird is rather similar to that of an airplane because they both follow the same aerodynamic rules. For migratory birds that sustain flight without flapping their wings for very long periods and have relatively higher Reynolds numbers of flight, this similarity is very impressive. This paper aims to analyze flight performance of migratory birds using flight mechanics equations and to compare the results with the bird flight data. In that way, the obtained model can be validated, and used to estimate the performance of the flapping unmanned aerial vehicles. To that end, the flight performance of a brent goose, a migratory bird, is examined: Firstly, the flight of migratory birds is modeled. Then, the chemical and mechanical powers of the bird is obtained and analyzed. Afterwards, several performance parameters such as the aerodynamic efficiency coefficient, rate of climb, climb gradient, optimum airspeed interval and range are attained. Also, a comparison is made between the results of this study and real acquired data for a brent goose in order to validate the method. Finally, the effects of the altitude and weight on the performance parameters are studied. The results of this study indicate that the flight dynamic equations are capable to predict flight performance of migratory birds with acceptable precision.

کلیدواژه‌ها [English]

  • Migratory Bird
  • Flight Performance
  • Chemical Power
  • Mechanical Power
  • Aerodynamic Efficiency Coefficient
[1] C. J. Pennycuick, Power requirements for horizontal flight in the pigeon Columba livia, Journal of Experimental Biology, Vol. 49, pp. 527-555. 1968.
[2] C. J. Pennycuick, The mechanics of bird migration, Ibis, Vol. 111, No. 4, pp. 525–556, 1969.
[3] J. M. V. Rayner, The mechanics of flight and bird migration performance, in: E. Gwinner (Eds.), Handbook of Bird Migration, pp. 283–299, Heidelberg: Springer Verlag, 1990.
[4] A. I. Houston, Optimization of locomotion, in: R. McN. Alexander (Eds.) 9, Handbook of Mechanics of Animal Locomotion, pp. 11, 277–300, Berlin: Springer Verlag, 1992.
[5] A. Hedenström and T. Alerstam, The mechanics of bird migration. Philosiphical Transactions of the RoyalSociety of London. Series B: Biological Sciences, Vol. 348, No. 1326, pp. 471–487, 1995.
[6] T. P. Weber and A. I. Houston, Flight costs, flight range and the stopover ecology of migrating birds, Philosiphical Transactions of the RoyalSociety of London. Series B: Biological Sciences, Vol. 348, No. 1326, pp. 471–487, 1997.
[7] C. P. Elington, Limitations on animal flight performance, Journal of Experimental Biology, Vol. 160, No. 1, pp. 71–91, 1991.
[8] C. J. Pennycuick and M. A. Rezend, The specific power output of aerobic muscle, related to the power density of mitochondria, Journal of Experimental Biology, Vol. 108, No. 1, pp. 377–392, 1984.
[9] C. J. Pennycuick, Mechanics of flight, in: D. S. Famer and J. R. King (Eds.), Handbook of Avian Biology, pp. 1–75, London: Academic Press, 1975.
[10] C. J. Pennycuick, Bird Flight Performance, Oxford University Press, 1989.
[11] C. J. Pennycuick, Predicting wingbeat frequencies and wavelength of birds, Journal of Experimental Biology, Vol. 150, No. 1, pp. 171–185, 1990.
[12] C. J. Pennycuick, Wingbeat frequency of birds in steady cruising flight: new data and improved predictions, Journal of Experimental Biology, Vol. 199, No. 7, pp. 1613–1618, 1990.
[13] C. J. Pennycuick, Speed and wingbeat frequencies of migrating birds compared with calculated benchmarks, Journal of Experimental Biology, Vol. 204, No. 19, pp. 3283–3294, 2001.
[14] V. A. Tucker, Bird metabolism during flight: evaluation of a theory, Journal of Experimental Biology, Vol. 58, No. 3, pp. 689–709, 1973.
[15] J. M. V. Rayner, A new approach to animal flight mechanics, Journal of Experimental Biology, Vol. 80, No. 1, pp. 17–54, 1979.
[16] J. M. V. Rayner, Vertebrate flapping flight mechanics and aerodynamics, and the evolution of flight in bats, Biona report, pp. 27–74, 1986.
[17] M. F. Abas, A. S. Rafie, H. B. Yusoff and K. A. Ahmad, Flapping wing micro-aerial-vehicle: kinematics, membranes, and flapping mechanisms of ornithopter and insect flight. Chinese Journal of Aeronautics. Vol. 29, No.5, pp. 1159-77, 2016.
[18] A. Wissa, J. Grauer, N. Guerreiro, J. J. Hubbard, C. Altenbuchner, Y. Tummala, M. Frecker and R. Roberts, Free flight testing and performance evaluation of a passively morphing ornithopter. International Journal of Micro Air Vehicles, Vol. 7, No.1, pp.21-40, 2015.
[19] H. Djojodihardjo and M. A. Abd Bari, Kinematic and unsteady aerodynamic study on bi-and quad-wing ornithopter. Journal of Aeroelasticity and Structural Dynamics. Vol. 5, No.4, 2017.
[20] C. J. Pennycuick, Modelling the flying bird, Elsvire, 2008.
[21] A. S. King, J. Mclelland, Birds: their structure and fnction, Second Edittion, Bailliere Tindall, first Edittion, Anness Road, 1984.
[22] T. Alerstam, C. Hjort, G. Högsstedt, P. E. Jönsson, J. Karlson and B. Larsson, Spring migration of birds across the Greenland Inlandice, Komimmissionen for videnskabelige undersøgelser I Grønland, 1986.
[23] G. A. Gudmeunson, S. Benvenuti, T. Alerstam, F. Papi, K. Lilliendahl, and S. Åkesson, Examining the limits of flight and orientation performance: satellite traching of brant geese migratory across the Greenland ice-cap, Proceedings of the Royal Society of London. Series B: Biological Sciences, Vol. 261, No. 1360, pp. 73–79, 1995.
[24] M. Green and T. Alerstam, Flight speeds and climb rates of Brent Geese: mass-dependent differences between spring and autumn migration. Journal of Avian Biology, Vol. 31, No. 2, pp. 215–225, 2000.
[25] M. Green, T. Alerstam, P. Clausen, R. Drent & B. S. Ebbinge, Dark-bellied Brent Geese Branta bernicla bernicla, as recorded by satellite telemetry, do not minimize flight distance during spring migration, Ibis, Vol. 144, No. 1, pp. 106–121, 2002.
[26] Clausen, Preben, Bart A. Nolet, A. D. Fox, and Marcel Klaassen, Long-distance endozoochorous dispersal of submerged macrophyte seeds by migratory waterbirds in northern Europe—a critical review of possibilities and limitations, Acta oecologica, no. 3, pp. 191-203, 2004.
[27] S. A. Bagherzadeh, An introdution to airplain performane, Isfahan: Jahad Daneshgahi, 2017. (In Persian)
[28] Clausen, Preben, Martin Green, and Thomas Alerstam, Energy limitations for spring migration and breeding: the case of brent geese Branta bernicla tracked by satellite telemetry to Svalbard and Greenland, Oikos, Vol. 103, no. 2 pp. 426-445, 2003.
[29] Munson K, editor, Jane's unmanned aerial vehicles and targets. Jane's Information Group Limited, 2011.
[30] M. Ramezani Voloojerdi, Experimental Investigation of Effect of Wing Swept on Flapping Wing Performance, PhD diss., University of Amirkabir University of Technology (Tehran Polytechnic), Department of Aerospace Engineering, 2019.
[31] www.festo.com/bionic.
[32] Paranjape, Aditya A., Michael R. Dorothy, Soon-Jo Chung, and Ki-D. Lee, A flight mechanics-centric review of bird-scale flapping flight, International Journal of Aeronautical and Space Sciences, Vol. 13, no. 3, pp. 267-281, 2012
[33] Bin Jumat, Muhammad Ridhwan, and Sutthiphong Srigrarom, Design and development of UGS flapping wing MAVs, 2014.
[34] PJ, Nandu Jith, and Harsh Gupta, Design and fabrication of a flapping wing unmanned aerial vehicle with bird kinematics, Journal of Aerospace Engineering & Technology, Vol. 4, no. 2, pp. 9-21, 2014.
[35] Gerdes, John, Alex Holness, Ariel Perez-Rosado, Luke Roberts, Adrian Greisinger, Eli Barnett, Johannes Kempny et al, Robo Raven: a flapping-wing air vehicle with highly compliant and independently controlled wings, Soft Robotics, Vol. 1, no. 4 pp. 275-288, 2014.