بررسی تأثیر مکانیسم گام متغیر در توسعه عملکرد ربات پرنده چهارپره با استفاده از واپایشگر خطی‌سازی بازخورد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری هوافضا / مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک اشتر

2 عضو هیات علمی / مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک اشتر

چکیده

هدف از این تحقیق، توسعه روش‌های واپایش ربات هوایی چهارپره-کوادروتور- با استفاده از مکانیسم گام متغیر و مقایسه آن با روش غالب واپایش این‌گونه پرنده‌ها مبنی بر تغییر سرعت دوران روتورهای اصلی، است. مدل‌سازی دینامیکی در این بررسی اساساً شامل مدل آئرودینامیک روتورهای اصلی در رینولدز پایین، مدل‌سازی دینامیکی موتور و سیستم پیشران با تلفیق تئوری ممنتم المان پره است. با قید حداقل مصرف توان و بهره‌گیری مکان هندسی ریشه‌ها، بهینه‌سازی پرواز ایستا، پیاده‌سازی و با دو حلقه وضعیت و موقعیت از روش‌های خطی و همچنین خطی‌سازی بازخورد پرنده واپایش گردیده است. واپایش موقعیت پرنده در مکانیسم گام متغیر بهبود مانور پذیری پرنده را نمایش می‌دهد. مقایسه نتایج شبیه‌سازی، بهبود عملکرد را در مکانیسم گام متغیر با استفاده از خطی‌سازی بازخورد در مقابل روش واپایشگر خطی اثبات می‌نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Feedback linearization of variable pitch flying robot: improvement of stability and performance

نویسندگان [English]

  • Yasin Sarafraz 1
  • Farid Shahmiri 2
  • Seyeh Hoseyn Sadati 2
1
2
چکیده [English]

This paper concerned with the performance improvement of quad rotor using by variable pitch control system. The methodology was laid out based on dynamic modeling of six degree of freedom motion, trim calculations, linearization, and robust control system design for a candidate variable pitch quad-rotor at hover. Therefore, a comprehensive mathematical model of rotors was derived based on the blade element-momentum theory (BEMT) at low Reynolds number, and then, the engine and propulsion models were appended to form the real quad-rotor as a whole. Two control loops including of an inner loop for attitude control system and the outer loop for motion control applied with the robust control system, is the main structure of control system design. Linear controller and feedback linearization controller was also implemented to cover the stability of the quad rotor and compensation of fixed and variable pitch control mechanisms.. Variable pitch quad rotor helped the user to made bigger quad rotor with the less problem in control system which prepared from gyroscopic effect in fixed pitch quad rotor.

کلیدواژه‌ها [English]

  • Quad Rotor
  • Variable Pitch
  • Linear Controller
  • Feedback Linearization
[1] Jun Li, Dynamic analysis and PID control for a quad rotor, International Conference on Mechatronics and Automation (ICMA), 2011.
[2] A.Tayebi, S. McGilvray, Attitude stabilization of a four-rotor aerial robot, IEEE Conference on decision and Control, 2004.
[3] Dario Martin Schafroth, Aerodynamics, Modeling and Control of an Autonomous Micro Helicopter, PhD Thesis, Zürich, Schweiz, 2010
[4] S. Bouabdallah, Design and Control of Quad Rotors with Application to Autonomous Flying, PhD Thesis of Ecole Polytechnique Fédérale De Lausanne, 2007.
[5] Ashfaq Ahmad Mian, Wang Daobo, Modeling and Back stepping-based Nonlinear Control Strategy for a 6 DOF Quadrotor Helicopter, Chinese Journal of Aeronautics, 2008.
[6]T. Madani and A. Benallegue, Back stepping Control for a Quadrotor Helicopter, International Conference on Intelligent Robots and Systems, IEEE, 2006.
[7] Yu yali, Jiang changhong; Back stepping Control of Each Channel for a Quadrotor Aerial Robot, International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE); 2010.
[8] Dadgarnegaz H., Kazemi M.H, Control design of quadrotor feed forward controller in the mass uncertainty, International conference on electrical Engineering, Tehran, (2016) [in Persian].
[9] Abdellah Mokhtari and A. Benallegue, Dynamic Feedback Controller of Euler Angles and Wind parameters estimation for a Quadrotor Unmanned Aerial Vehicle, International Conference on Control Applications, IEEE; USA, 2004.
[10] A. Mokhtari, A.Benallegue, Robust feedback linearization and GH∞ controller for a quadrotor unmanned aerial vehicle, International Conference on Intelligent Robots and Systems, IEEE, 2005.
[11] Zhou Fang, Zhang Zhi, Liang Jun, Wang Jian, Feedback Linearization and Continuous Sliding Mode Control for a Quadrotor UAV, Proceedings of the 27th Chinese Control Conference, China, 2008.
[12] A.Benallegue, A. Mokhtari, and L. Fridman, Feedback linearization and high order sliding mode observer for a quadrotor UAV, International Workshop on Variable Structure Systems, IEEE, 2006.
[13] M. Khoshboy, H. Sadati, Quadrotor unmanned aerial vehicle controller design, International conference on electrical Engineering, Tehran, (2016) [in Persian].
[14] J. Bornstein, The Hoverbot, An electrically powered flying robot, University of Michigan, unpublished.
[15] B. Michini and et al, Design and flight testing of an autonomous variable-pitch quad rotor International Conference on Robotics and Automation, IEEE, May 2011.
[16] p. J. Bristeau, The Role of Propeller Aerodynamics in the Model of a Quad Rotor Uav, the European Control Conference, Budapest, Hungary, 2009.
[17] Mark Drela, First-Order DC Electric Motor Model, MIT Aero & Astro, February 2007.
[18] J .Leishman, Principles Of Helicopter Aerodynamics, Cambridge Aerospace Series, j. Rycroft, first Edn, PP. 243-298, Cambridge University Press, 2000.
[19] p. Castillo and R. Lozano, Modeling and Control of Mini-Flying Machines, Springer, Advanced Textbooks in Control and Signal Processing, 2009.
[20] H. Voos, nonlinear control of a quad rotor micro-uav using feedback-linearization, international conference on mechatronic, IEEE, 2009.