مدل تحلیلی برای پیش بینی توزیع تنش در کامپوزیت های لاستیکی تقویت شده با الیاف آرامید با در نظر گرفتن فاز واسط

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری / گروه مهندسی مکانیک، دانشکده مکانیک، برق و کامپیوتر، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران

2 عضو هیات علمی / گروه مهندسی هوافضا، دانشکده فنی و مهندسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران

چکیده

این مقاله با استفاده از مدل سه فازی مایکرومکانیک با تقویت کننده کوتاه و فاز واسط، به تحلیل تنش در کامپوزیت های لاستیکی تقویت شده با الیاف آرامید می پردازد. با توجه به اهمیت فاز واسط در این نوع کامپوزیت ها از مدل اصلاح شده عقب افتادگی برشی و تکنیک تقویت کننده مجازی به منظور بررسی مکانیزم انتقال بار و توزیع تنش استفاده شده است. نتایج به دست آمده از مدل تحلیلی بیانگر این است که حداکثر تنش کششی در مرکز الیاف وجود دارد در حالی که تنش برشی میان رویه در انتهای الیاف به بیشترین مقدار خود می‌رسد. در این مدل خواص مکانیکی فاز واسط نظیر مدول الاستیک با متوسط گیری از خواص مکانیکی متغیر شعاعی حاصل می گردد. اثرات نسبت مدول، نسبت منظری، ضخامت و مدول الاستیک فاز واسط بر توزیع تنش محوری و برشی مورد بررسی قرار گرفته است. اهمیت این کار در مقایسه با مدل های ارائه شده قبلی این است که با استفاده از تکنیک تقویت کننده مجازی برای مدل مایکرومکانیک سه فازی با الیاف کوتاه می‌‌توان با تعیین توزیع تنش در ناحیه زمینه به خواص مکانیکی کامپوزیت دست یافت. همچنین با مدلسازی المان محدود مدل سه فازی مایکرومکانیک به صورت تمام پیوسته و مقایسه نتایج حاصل با نتایج مدل تحلیلی سازگاری و تطابق خوبی مشاهده می شود.

کلیدواژه‌ها


عنوان مقاله [English]

Analytical model for prediction of stress distribution in aramid fiber reinforced rubber composites considering interphase

نویسندگان [English]

  • mohammad hassan zare 1
  • mehdi mondali 2
1 Ph.D. Candidate, Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Department of Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
چکیده [English]

In this paper, a three-phase micromechanical model of short fiber composites considering interphase is developed to analyze the stress field in aramid fiber reinforced rubber composites. Due to the importance of the interphase in this type of composites, the modified shear-lag model and the imaginary fiber technique have been applied to investigate the load transfer mechanism and stress distribution. The results obtained from the analytical model indicate that the maximum tensile stress is occurred at the center of the fiber, whereas the shear stress of the interface at the end of the fiber reaches the maximum value. In the present model, the mechanical properties of the interphase, such as the elastic modulus, are obtained by averaging the radius-dependent mechanical properties. Also, the effects of the modulus ratio, aspect ratio, interphase thickness and Young modulus on the axial and shear stresses of interface have been investigated. The importance of the present model compared to the previous models is to use of imaginary fiber technique for short fiber composites with a three-phase micromechanics model. Note that the mechanical properties of these composites can be determined by obtaining the distribution of stresses in the matrix. There is also good agreement between the FEM results of full continuum micromechanical three-phase model and the results of the present analytical model.

کلیدواژه‌ها [English]

  • Imaginary fiber technique
  • Interphase
  • Rubber composite
  • Stress transfer
  • Short fiber composite
[1] Kashani, M. R., Aramid Short Fiber Reinforced Rubber as a Tire Tread Composite, Journal of applied polymer science, Vol. 113, No. 2, pp. 1355-1363, 2009.
[2] Gu, B., Chen, Y. and  Zhou, J., Design, Manufacture and Performance Evaluation of Non-Asbestos Sealing Composites,  in: Advances in Composite Materials-Ecodesign and Analysis, Eds.: InTech, Vol. 64, pp. 21-54, 2011.
[3] Dasheng, Z., Boqin, G. and  Ye, C., Micromechanical Model of Stress Distribution and Transfer in Short-Fiber-Reinforced Elastomer Matrix Composite, Journal of Computational and Theoretical Nanoscience, Vol. 5, No. 8, pp. 1546-1550, 2008.
[4] Tian, M., Su, L., Cai, W., Yin, S., Chen, Q., Fong, H. and  Zhang, L., Mechanical Properties and Reinforcement Mechanisms of Hydrogenated Acrylonitrile Butadiene Rubber Composites Containing Fibrillar Silicate Nanofibers and Short.
[5] Zhang, B., Gu, B. and  Yu, X., Failure Behavior of Resorcinol–Formaldehyde Latex Coated Aramid Short Fiber Reinforced Rubber Sealing under Transverse Tension, Journal of Applied Polymer Science, Vol. 132, No. 12, 2015.
[6] Cox, H., The Elasticity and Strength of  Paper and Other Fibrous Materials, British journal of applied physics, Vol. 3, No. 3, pp. 72-79, 1952.
[7] Halpin, J. C., Primer on Composite Materials Analysis, Lancaster (PA), Technomic, Vol. 130, 1984.
[8] Tandon, G. and  Weng, G., The Effect of Aspect Ratio of Inclusions on the Elastic Properties of Unidirectionally Aligned Composites, Polymer composites, Vol. 5, No. 4, pp. 327-333, 1984.
[9] Eshelby, J. D., The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proc. R. Soc. Lond. A, Vol. 241, No. 1226, pp. 376-396, 1957.
[10] Mori, T. and  Tanaka, K., Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions, Acta metallurgica, Vol. 21, No. 5, pp. 571-574, 1973.
[11] Lu, Y. and  Liaw, P., Effects of Particle Orientation in Silicon Carbide Particulate Reinforced Aluminum Matrix Composite Extrusions on Ultrasonic Velocity Measurement, Journal of composite materials, Vol. 29, No. 8, pp. 1096-1116, 1995.
[12] Lawrence, P., Some Theoretical Considerations of Fibre Pull-out from an Elastic Matrix, Journal of Materials Science, Vol. 7, No. 1, pp. 1-6, 1972.
[13] Takaku, A. and  Arridge, R., The Effect of Interfacial Radial and Shear Stress on Fibre Pull-out in Composite Materials, Journal of Physics D: Applied Physics, Vol. 6, No. 17, pp. 2038-2047, 1973.
[14] Luk, V. and  Keer, L., Stress Analysis for an Elastic Half Space Containing an Axially-Loaded Rigid Cylindrical Rod, International Journal of Solids and Structures, Vol. 15, No. 10, pp. 805-827, 1979.
[15] Hsueh, C. H., Analytical Evaluation of Interfacial Shear Strength for Fiber Reinforced Ceramic Composites, Journal of the American Ceramic Society, Vol. 71, No. 6, pp. 490-493, 1988.
[16] Hsueh, C.-H., Interfacial Debonding and Fiber Pull-out Stresses of Fiber-Reinforced Composites, Materials Science and Engineering: A, Vol. 123, No. 1, pp. 1-11, 1990.
[17] Hsueh, C.-H., Interfacial Debonding and Fiber Pull-out Stresses of Fiber-Reinforced Composites Vii: Improved Analyses for Bonded Interfaces, Materials Science and Engineering: A, Vol. 154, No. 2, pp. 125-132, 1992.
[18] Hsueh, C.-H., Young's Modulus of Unidirectional Discontinuous-Fibre Composites, Composites Science and Technology, Vol. 60, No. 14, pp. 2671-2680, 2000.
[19] Gao, X.-L. and  Li, K., A Shear-Lag Model for Carbon Nanotube-Reinforced Polymer Composites, International Journal of Solids and Structures, Vol. 42, No. 5-6, pp. 1649-1667, 2005.
[20] Safarabadi, M., More Accurate Evaluation of Curing Residual Stress Field Considering Interphase Characteristics, Journal of Science and Technology of Composites, Vol. 1, No. 1, pp. 3-12, 2014. (In Persian)
[21]  Esbati, A. H. and Irani, S., Multiscale Modeling of Fracture in Polymer Nanocomposite Reinforced by Intact and Functionalized Cnts,  Journal of Science and Technology of Composites, Vol. 4, No. 1, pp. 35-46, 2017. (In Persian)
[22] Zakeri, M., Shayanmehr, M. and  Shokrieh, M. M., Interface Modeling of Nanotube Reinforced Nanocomposites by Using Multi-Scale Modeling Method, Modares Mechanical Engineering, Vol. 12, No. 5, pp. 1-11, 2012. (In Persian)
[23] Sina Alemi Parvin, Asghar Mohammadpour Fattahi, Numerical prediction of elastic properties of carbon nanotube reinforced composites using multi-scale method, Aerosapce Knowledge and Technology Journal, Vol. 7, No. 1, pp. 117-128, 2018. (In Persian)
[24]  Meini, Y., Yanqing, Y., Bin, H. and  Yaojin, W., Effect of Interface Reaction on Interface Shear Strength of Sic Fiber Reinforced Titanium Matrix Composites, Rare Metal Materials and Engineering, Vol. 38, No. 8, pp. 1321-1324, 2009.
[25] Zhang, W., Li, L. and  Wang, T., Interphase Effect on the Strengthening Behavior of Particle-Reinforced Metal Matrix Composites, Computational Materials Science, Vol. 41, No. 2, pp. 145-155, 2007.
[26] Mondali, M. and Yousefi, M. R, Prediction a Range for Elastic Modulus of Cnt Reinforced Polymer Composites Using Analytical Method, Modares Mechanical Engineering, Vol. 14, No. 7, pp. 52-60, 2014. (In Persian)
[27] Shokrieh, M. M., Soveity, S. and  Mosalmani, R., An Investigation on Effects of Aspect Ratio of Representative Volume Element on Elastic Modulus of a Carbon Nanotubes Reinforced Polymer, Modares Mechanical Engineering, Vol. 14, No. 9, pp. 107-116, 2014. (In Persian)
[28] Abedian, A., Mondali, M. and  Pahlavanpour, M., Basic Modifications in 3d Micromechanical Modeling of Short Fiber Composites with Bonded and Debonded Fiber End, Computational Materials Science, Vol. 40, No. 3, pp. 421-433, 2007.
[29] Mondali, M. and  Abedian, A., An Analytical Model for Stress Analysis of Short Fiber Composites in Power Law Creep Matrix, International Journal of Non-Linear Mechanics, Vol. 57, pp. 39-49, 2013.
[30] Timoshenko, S. and  Goodier, J., Theory of Elasticity, third ed.,  New York: McGraw-Hill Book Co., Inc., 1970.
[31] Taheri Behrooz, F., Mahdavizade, S. M. and  Gholami, M. J., Micromechanics of Stress Transfer through the Interphase in Pull out Test of Fiber through the Resin, Journal of Science and Technology of Composites, Vol. 4, No. 3, pp. 283-294, 2017. (In Persian)
[32] Yin Yao, Shaohua Chen, Peijian Chen, The effect of a graded interphase on the mechanism of stress transfer in a fiber-reinforced composite, Mechanics of Materials, Vol. 58, pp. 35-54, 2013.
[33] Rahnama, H. and  Shokrieh, M. M., Exact Micromechanical Stress Analysis of Long Fiber Composites under Uniform Tensile Loading, Journal of Science and Technology of Composites, Vol. 2, No. 3, pp. 1-10, 2015. (In Persian)
[34] Papanicolaou, G., Anifantis, N., Keppas, L. and  Kosmidou, T. V., Stress Analysis of Short Fiber-Reinforced Polymers Incorporating a Hybrid Interphase Region, Composite Interfaces, Vol. 14, No. 2, pp. 131-152, 2007.
[35] Shen, L. and  Li, J., Effective Elastic Moduli of Composites Reinforced by Particle or Fiber with an Inhomogeneous Interphase, International Journal of Solids and Structures, Vol. 40, No. 6, pp. 1393-1409, 2003.
[36] Yu, X., Gu, B. and  Zhang, B., Effects of Short Fiber Tip Geometry and Inhomogeneous Interphase on the Stress Distribution of Rubber Matrix Sealing Composites, Journal of Applied Polymer Science, Vol. 132, No. 16, pp. 1-8, 2015.
[37] Coffey, A., O’Bradaigh, C. and  Young, R., Interfacial Stress Transfer in an Aramid Reinforced Thermoplastic Elastomer, Journal of materials science, Vol. 42, No. 19, pp. 8053-8061, 2007.