طراحی الگوریتم زیربهینه تصحیح برنامه فراز، تخمین و کنترل یکپارچه پرواز ماهواره‌بر چندمرحله‌ای به منظور قرار گرفتن ماهواره در مدار از پیش تعیین‌شده به روش کنترل تطبیقی بدون مدل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد / دانشکده مهندسی هوافضا، واحد علوم و تحقیقات دانشگاه آزاد اسلامی، تهران

2 عضو هیات علمی / دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران

3 عضوهیات علمی / دانشکده مهندسی هوافضا، واحد علوم و تحقیقات دانشگاه آزاد اسلامی، تهران.

4 عضو هیات علمی / دانشکده مهندسی هوافضا، دانشگاه صنعتی شریف، تهران.

چکیده

در این پژوهش یک روش نوین برای تصحیح هدایت و کنترل زیربهینه یکپارچه یک ماهواره­بر فرضی سه­مرحله­ای به منظور قرار دادن ماهواره در یک مدار از پیش­تعیین­شده ارائه می­شود. به گونه­ای که نخست یک هدایت نامی از پیش طراحی­شده برای مدل نامی سامانه در نظر گرفته می­شود. سپس با استفاده از روش کنترل تطبیقی بدون مدل تک­ورودی- چندخروجی، سه مقوله تصحیح هدایت، تخمین مدل برای سیستم و تعیین سیاست کنترلی به صورت برخط انجام می­شود. برای این منظور، مفروضات عملی حاکم بر مساله به عنوان خروجی­های مطلوب سیستم در نظر گرفته شده­اند و با توجه به اهمیت هر کدام در هر بازه زمانی، اهمیت آنها با تنظیم ضرایب کنترلی لحاظ می­شود. نتایج شبیه­سازی این روش از جمله زاویه فراز، نرخ زاویه فراز، زاویه بالک­ها، سرعت و ارتفاع مداری، کارایی این روش برای دستیابی به اهداف کنترلی سیستم مورد مطالعه را نشان می­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Designing a suboptimal integrated pitch program correcting, estimation and control algorithm of the of the multi-stage satellite flight in order to set the satellite in the pre-determined orbit using the model-free adaptive control method

نویسندگان [English]

  • Mohammadreza Yaseri 1
  • Ali Reza Basohbat Novinzadeh 2
  • Farshad Pazoki 3
  • Seied Hosein Pourtakdoust 4
1 Graduated Student, Department of Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran
2 Associate Professor, Department of Aerospace Engineering, K. N. Toosi University of Technology, Tehran
3 Assistant Professor, Department of Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran
4 Professor, Department of Aerospace Engineering, Sharif University of Technology, Tehran
چکیده [English]

In this study, a new method for the suboptimal integrated guidance correcting and control of a hypothetical three-stage satellite carrier is presented in order to set the satellite in a predetermined orbit. In such a way that first a pre-designed nominal guidance is considered for the nominal model of system. So, the guidance correction, estimation of the model for the system and determination of the control policy are performed simultaneously online using the single-input-multiple-output model-free adaptive control method. For this purpose, some practical assumptions governing the problem are considered as the desired outputs of the system, and according to the importance of each in any time interval, their importance is passed by regulating the control coefficients. The simulation results of this method, including pitch angle, rate of pitch angle, angle of vanes, orbital velocity and height, show the efficiency of this method to achieve the control goals of the studied system.

کلیدواژه‌ها [English]

  • suboptimal integrated guidance correcting and control
  • three-stage satellite carrier
  • nominal guidance
  • model-free adaptive control
  • pitch angle
  • angle of vanes
  • orbital velocity and height
[1] L. Ma, K. Wang, Z. Shao, Z. Song, and L. T. Biegler, “Direct trajectory optimization framework for vertical takeoff and vertical landing reusable rockets: case study of two-stage rockets,” Eng. Optim., vol. 51, no. 4, pp. 627–645, 2019.
[2] A. D. Koch, “Fast, robust and near-optimal approximation of GTO trajectories and payload capacities of multistage rockets,” CEAS Sp. J., vol. 11, no. 3, pp. 269–285, 2019.
[3] R. Chai, A. Tsourdos, A. Savvaris, S. Chai, Y. Xia, and C. L. P. Chen, “Review of advanced guidance and control algorithms for space/aerospace vehicles,” Prog. Aerosp. Sci., vol. 122, p. 100696, 2021.
[4] P. Menon, G. Sweriduk, and E. Ohlmeyer, “Optimal fixed-interval integrated guidance-control laws for hit-to-kill missiles,” in AIAA guidance, navigation, and control conference and exhibit, 2003, p. 5579.
[5] S. He, W. Wang, and J. Wang, “Three-dimensional multivariable integrated guidance and control design for maneuvering targets interception,” J. Franklin Inst., vol. 353, no. 16, pp. 4330–4350, 2016.
[6] X. Wang, Y. Zheng, and H. Lin, “Integrated guidance and control law for cooperative attack of multiple missiles,” Aerosp. Sci. Technol., vol. 42, pp. 1–11, 2015.
[7] Z. Cong and W. Yun-jie, “Non-singular terminal dynamic surface control based integrated guidance and control design and simulation,” ISA Trans., vol. 63, pp. 112–120, 2016.
[8] D. Zhao, X. Liu, Q. Han, and G. Zhang, “Blended Methodology of Lateral Jet Simultaneous with Aerodynamic Fin for Integrated Guidance and Control of Flight Vehicle,” in 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2020, pp. 367–372.
[9] D. Zhao, X. Liu, Q. Han, and G. Zhang, “The Allocation Control of Lateral Jet System of Flight Vehicle Based on Integrated Guidance and Control Model,” in 2020 Chinese Control And Decision Conference (CCDC), 2020, pp. 2973–2978.
[10] Q. Wang, M. Ran, and C. Dong, “Robust partial integrated guidance and control for missiles via extended state observer,” ISA Trans., vol. 65, pp. 27–36, 2016.
[11] G. Li, T. Chao, S. Wang, and M. Yang, “Integrated Guidance and Control for the Fixed-trim Vehicle against the Maneuvering Target,” Int. J. Control. Autom. Syst., pp. 1–12, 2020.
[12] H. Yan, S. Tan, and Y. He, “A small-gain method for integrated guidance and control in terminal phase of reentry,” Acta Astronaut., vol. 132, pp. 282–292, 2017.
[13] T. Zhao, P. Wang, L. Liu, and J. Wu, “Integrated guidance and control with L2 disturbance attenuation for hypersonic vehicles,” Adv. Sp. Res., vol. 57, no. 12, pp. 2519–2528, 2016.
[14] H. Yan and Y. He, “Adaptive Integrated Guidance and Control Based on Backstepping for the Landing of Reusable Launch Vehicles.,” IFAC-PapersOnLine, vol. 48, no. 28, pp. 496–501, 2015.
[15] E. Brendel, B. Hérissé, and E. Bourgeois, “Optimal guidance for toss back concepts of Reusable Launch Vehicles,” 2019.
[16] B. Tian, W. Fan, and Q. Zong, “Integrated guidance and control for reusable launch vehicle in reentry phase,” Nonlinear Dyn., vol. 80, no. 1–2, pp. 397–412, 2015.
[17] A. B. Kisabo, A. F. Adebimpe, and S. O. Samuel, “Pitch Control of a Rocket with a Novel LQG/LTR Control Algorithm,” 2019.
[18] X. Liu, W. Huang, and L. Du, “An integrated guidance and control approach in three-dimensional space for hypersonic missile constrained by impact angles,” ISA Trans., vol. 66, pp. 164–175, 2017.
[19] P. Z. Schulte and D. A. Spencer, “Development of an integrated spacecraft guidance, navigation, & control subsystem for automated proximity operations,” Acta Astronaut., vol. 118, pp. 168–186, 2016.
[20] W. Wang, S. Xiong, S. Wang, S. Song, and C. Lai, “Three dimensional impact angle constrained integrated guidance and control for missiles with input saturation and actuator failure,” Aerosp. Sci. Technol., vol. 53, pp. 169–187, 2016.
[21] S. Xingling and W. Honglun, “Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO,” ISA Trans., vol. 57, pp. 10–22, 2015.
[22] F. Tavakoli and A. B. Novinzadeh, “Designing a closed-loop guidance system to increase the accuracy of satellite-carrier boosters’ landing point,” Aerosp. Sci. Technol., vol. 76, pp. 242–249, 2018.
[23] H. Zhao, “Terminal Angular Constraint Integrated Guidance and Control for Flexible Hypersonic Vehicle with Dead-Zone Input Nonlinearity,” J. BEIJING Inst. Technol., vol. 29, no. 4, pp. 489–503, 2020.
[24] Z. Hou and S. Jin, Model free adaptive control: theory and applications. CRC press, 2013.
[25] L. Duan, Z. Hou, X. Yu, S. Jin, and K. Lu, “Data-driven model-free adaptive attitude control approach for launch vehicle with virtual reference feedback parameters tuning method,” IEEE Access, vol. 7, pp. 54106–54116, 2019.
[26] N. I. E. Wenming, L. I. Huifeng, and R. Zhang, “Model-free adaptive optimal design for trajectory tracking control of rocket-powered vehicle,” Chinese J. Aeronaut., vol. 33, no. 6, pp. 1703–1716, 2020.
[27] X. Wang, Y. Li, and J. Zhang, “A Novel IGC Scheme for RHV with the Capabilities of Online Aerodynamic Coefficient Estimation and Trajectory Generation. Mathematics 2021, 9, 172.” s Note: MDPI stays neutral with regard to jurisdictional claims in published, 2021.