هدایت تعقیب مسیر و پرواز آرایشی پهپادها، مبتنی بر خطی‌سازی پس‌خور و مشاهده‌گر مود لغزشی

نوع مقاله : مقاله پژوهشی

نویسنده

دکتری هوافضا / سازمان صنایع هوافضا، تهران

چکیده

در این مقاله به طراحی قانون هدایت مناسب برای تعقیب مسیر و پرواز آرایشی پرداخته شده‌است. هر دو هدایت تعقیب مسیر و هدایت پرواز آرایشی بر اساس کنترل خطی‌سازی پس‌خور می‌باشد. در تعقیب مسیر، رهبر با سرعت ثابت فرض شده‌است. با تغییر متغیر مستقل از زمان به برد طولی، مسئله به یک مسئله تک ورودی-تک خروجی تبدیل و کنترلر غیرخطی طراحی شده‌است. در طراحی پرواز آرایشی، تعقیب‌گرها با سرعت طولی قابل کنترل و البته محدود فرض شده است. بنابراین در کنترل پرواز آرایشی یک سیستم دو ورودی-دو خروجی مطرح است. در طراحی کنترلر پرواز آرایشی از یک مشاهده‌گر مود لغزشی مرتبه 2 برای تخمین شتاب و زاویه مسیر ‌رهبر استفاده شده‌است. نتایج نشان می‌دهد که کنترلر تعقیب مسیر طراحی‌شده عملکرد بهتری نسبت به هدایت غیرخطی مبتنی بر هدایت ناوبرسی تناسبی دارد. همچنین، کنترلر طراحی شده برای پرواز آرایشی و همچنین مشاهده گر مود لغزشی عملکرد مناسبی در ایجاد پرواز آرایشی و تخمین حالت‌های موردنیاز حتی در حضور نویز اندازه‌گیری دارد.

کلیدواژه‌ها


عنوان مقاله [English]

UAV trajectory tracking and formation flight guidance based on feedback linearization and sliding mode observer

نویسنده [English]

  • Mahdi Nikusokhan lame
Aerospace science industry, Tehran,
چکیده [English]

This paper proposes a guidance law design for trajectory tracking of a leader UAV and formation flight of pursuer UAVs. According to nonlinear kinematics for both problems, the feedback linearization theory has ben used. Therefore, using this theory, the nonlinear problem has been transferred to a linear one and using the linear control theory the control parameters has been determined to achieve the desired performance. In the trajectory tracking problem, assuming a constant velocity leader, a change of the independent variable from the time to the downrange has been performed and the problem is transferred to a single-input single-output control problem, consequently, the controller is designed. In the formation flight problem, assuming pursuers with the bounded controllable velocity, we have a two-input two-output nonlinear system. Supposing no communications between pursuers and the leader, a second order sliding mode observer is utilized to estimate the required states in formation flight controller. Results show that the settling time of trajectory tracking error of the proposed nonlinear guidance law is almost 30% better than the nonlinear trajectory tracking controller based on the proportional navigation guidance law. Also, the designed formation flight has a good performance in controlling the formation flight. Also, the sliding mode observer is able to estimate the leader states even in the presence of noise.

کلیدواژه‌ها [English]

  • UAV
  • trajectory tracking
  • formation flight
  • feedback linearization
  • sliding mode observer
[1] P. Lu., “Nonlinear trajectory tracking guidance with application to a launch vehicle”, Journal of Guidance, control and dynamics, vol. 19, no. 1, pp. 99-106, Jan. 1996.
[2] K. Yang., S. Sukkarieh., and K. Kang., “Adaptive nonlinear model predictive path tracking control for a fixed wing UAV”, in AIAA Guidance, Navigation, and Control Conference, Chicago, Illinois, 2009, pp. 1-13.
[3] W. Ren., and E. Atkins., “Nonlinear trajectory tracking for fixed wing UAVs via backstepping and parameter estimation”, in AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, 2005, pp. 1-11.
[4] A. Parsa., A. Kalhor, and M. A. Amiri Atashgah., “Backstepping Control Performance Enhancement using Close Loop Identification for Quadrotor Trajectory Tracking”, Modares Mechanical Engineering, vol. 16, no. 11, pp. 224-234, 2017. (in Persian)
[5] S. Park., J. Peyst., and J. P. How., “Performance and Lyapunov stability of nonlinear path-following guidance method”, Journal of Guidance, control and dynamics, vol. 30, no. 6, pp. 1718-1728, Nov. 2007.
[6] D. J. Gates., “Nonlinear path following method”, Journal of Guidance, control and dynamics, vol. 33, no. 2, pp. 321-332, March. 2010.
[7] S. Bharadwaj., A. V. Rao., and K. D. Mease., “Entry trajectory tracking law via feedback linearization”, Journal of Guidance, control and dynamics, vol. 21, no. 5, pp. 726-732, Sep. 1998.
[8] W. Ren. and R. W. Beard, “Trajectory tracking for unmanned air vehicles with velocity and heading rate constraints”, IEEE Transactions on control systems technology, vol. 12, no. 5, pp. 706-716, Aug. 2004.
[9] E. P. Andersons. T. W. McLain., and R. W. Beard, “Real-time dynamic trajectory smoothing for unmanned air vehicles”, IEEE Transactions on control systems technology, vol. 13, no. 3, pp. 471-477, Apr. 2005.
[10] R. W. Beard., T. W. McLain. and M. A. Goodrich., “Coordinated target assignment and intercept for unmanned air vehicles”, IEEE Transactions on robotics and automation, vol. 18, no. 6, pp. 911-922, Dec. 2002.
[11] E. P. Andersons. and R. W. Beard., “An algorithmic implementation of constrained extremal control for UAVs”, in AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California, 2002, pp. 317-326.
[12] R. Bonna., and J. F. Camino., “Trajectory tracking control of a quadrotor using feedback linearization”, in International Symposium on Dynamic Problems of Mechanics, Natal, Brazil, 2015, pp. 1-9.
[13] B. Rubi., R. Perez., and B. Morcego., “A Survey of Path Following Control Strategies for UAVs Focused on Quadrotors”, Journal of Intelligent & Robotic Systems, vol. 98, pp. 241-265, Sep. 2019.
[14] A. Bhatia., M. Graziano., S. Karaman., R. Naldi., and E. Frazzoli., “Dubins trajectory tracking using commercial off-the-shelf autopilots”, in AIAA Guidance, Navigation, and Control Conference and Exhibit, Honolulu, Hawaii, 2008, pp. 1-14.
[15] N. Yokoyma., and Y. Ochi., “Path planning algorithms for skid-to-turn unmanned aerial vehicles”, Journal of Guidance, control and dynamics, vol. 32, no. 5, pp. 1531-1543, Sep. 2009.
[16] R. Dai., and J. E. Cochran., “Path planning and state estimation for unmanned aerial vehicles in hostile environments”, Journal of Guidance, control and dynamics, vol. 33, no. 2, pp. 595-601, March. 2010.
[17] A. R. Babaei., and M. Mortazavi., “Three-dimensional curvature-constrained trajectory planning based on in-flight waypoints”, Journal of Aircraft, vol. 47, no. 4, pp. 1391-1398, July. 2010.
[18] I. H. Whang., and I. W. Whang., “Horizontal waypoint guidance using optimal control”, IEEE Transaction on aerospace and electronic systems, vol. 38, no. 3, pp. 1116-1120, Dec. 2002.
[19] C. K. Ryoo., H. S. Shin., and M. J. Tahk., “Energy optimal waypoint guidance synthesis for antiship missiles”, IEEE Transaction on aerospace and electronic systems, vol. 4, no. 1, pp. 80-95, Feb. 2010.
[20] D. R. Nelson., D. B. Barber., W. McLain., and R. W. Beard., “Vector field path following for miniature air vehicles”, IEEE Transaction on Robotics, vol. 23, no. 3, pp. 519-529, June. 2007.
[21] D. A. Lawrence., E. W. Frew., and W. J. Pisano., “Lyapunov vector field for autonomous unmanned aircraft control”, Journal of Guidance, control and dynamics, vol. 31, no. 5, pp. 1220-1229, Sep. 2008.
[22] S. R. Griffiths., “Vector field approach for curved path following for miniature aerial vehicles”, in AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, 2006, pp. 1-15.
[23] R. Rysdyk., “Unmanned aerial vehicle path following for target observation in wind”, Journal of Guidance, control and dynamics, vol. 29, no. 2, pp. 1092-1100, Sep. 2006.
[24] F. S. Tabatabai-Nasab, S. A. A. Musavian, and A. Keymasi Khalaji, “Potentially Directed Robust Control of an Underwater Robot in the Presence of Obstacles”, Modares Mechanical Engineering, vol. 18, no. 3, pp. 1-8, 2018. (in Persian)
[25] S. Wu, Cooperative Guidance & Control of Missiles Autonomous Formation, Springer, 2018.
[26] L. Wenlei., W. Sentag., and W. Xiaolong., “Relative navigation of missile formation and INS error correction methods”, in Chinese Control And Decision Conference, Chongqing, China, 2017, pp. 1545-1551.
[27] A. Bester., P. A. Vela., G. Pryor., and A. Tannenbaum., “Flying in formation using a pursuit guidance algorithm”, in American Control Conference, Portland, OR, 2005, pp. 5085-5090.
[28] M. J. Tahk., C. S. Park., and C. K. Ryoo., “line-of-sight guidance laws for formation flight”, Journal of Guidance, control and dynamics, vol. 28, no. 4, pp. 708-716, July. 2005.
[29] S. Segal., J. Z. Ben-Asher., and H. Weis., “Derivation of formation-flight guidance laws for unmanned air vehicles”, Journal of Guidance, control and dynamics, vol. 28, no. 4, pp. 733-743, July. 2005.
[30] B. S. Kim., A. J. Calise., and R. J. Sattigeri., “adaptive, Integrated guidance and control design for line-of-sight-based formation flight”, Journal of Guidance, control and dynamics, vol. 30, no. 5, pp. 1386-1396, Sep. 2007.
[31] Z. Liang., L. Yi., X. Shida., and F. Han., “Multiple UAVs cooperative formation forming control based on back-stepping-like approach”, Journal of Systems Engineering and Electronics, vol. 29, no. 4, pp. 816-822, Aug. 2018.
[32] Q. Zhang and H. H. T. Liu, “UDE-Based Robust Command Filtered Backstepping Control for Close Formation Flight”, IEEE Transactions on Industrial Electronics, vol. 65, no. 11, pp. 8818-8827, Nov. 2018.
[33] X. Wang., Q. Yang., T. Cai., and A. Y. Wei., “Distributed formation flight control with translational and rotational maneuvering”, IEEE Access, vol. 7, pp. 159565-159574, Oct. 2019.
[34] N. Harl., “Coordinated rendezvous of unmanned air vehicles to a formation: A sliding mode approach”, in AIAA Guidance, Navigation, and Control Conference and Exhibit, Honolulu, Hawaii, 2008, pp. 1-25.
[35] D. Galzi., and Y. Shtessel., “Formation flight strategy and control using higher-order sliding-mode”, in AIAA Guidance, Navigation, and Control Conference and Exhibit, Hilton Head, South Calorina, 2007, pp. 1-16.
[36] T. F. K. Cordeiro., H. C. Ferreira and J. Y. Ishihara., “Robust and Synchronous Nonlinear Controller for Autonomous Formation Flight of Fixed Wing UASs”, in International Conference on Unmanned Aircraft Systems, Atlanta, GA, USA, 2019, pp. 378-387.
[37] T. F. K. Corderio., J. Y. Ishihara., and H. C. Ferreira., “A Decentralized Low-Chattering Sliding Mode Formation Flight Controller for a Swarm of UAVs”, Sensores, vol. 20, no. 11, pp. 1-17, May. 2020.
[38] J. Liu., Y. Li., and Z. Yang., “A dynamic sliding mode control method for multi-agent formation”, in Journal of Physics: Conference Series, Chongqing, China, 2021, pp. 1-7.
[39] Z. Zhang., K. Zhang., and Z. Han., “A Novel Cooperative Control System of Multi-Missile Formation Under Uncontrollable Speed”, IEEE Access, vol. 9, pp. 9753-9770, 2021.
[40] H. S. Shin., T. H. Kim., M. J. Tahk., and T. W. Hwang., “Nonlinear formation guidance law with robust disturbance observer”, International journal of aeronautical and space sciences, vol. 10, no. 1, pp. 30-36, 2009.
[41] A. Levant., “Higher-order sliding modes, differentiation, and output feedback control”, International journal of control, vol. 76, pp. 924-941, June. 2003.
[42] Y. B. Stessel., I. A. Shkolnikov., and A. Levant., “Smooth second-order sliding modes: missile guidance application”, Automatica, vol. 73, pp. 1470-1476, Aug. 2007.
[43] C. E. Hall., and B. Stessel., “Sliding mode disturbance observer-based control for a reusable launch vehicle”, Journal of Guidance, control and dynamics, vol. 29, no. 6, pp. 1315-1328, Nov. 2006.
[44] M. Afshar., A. Toluii, and A. Soleimani., “Spacecraft formation flight control using sliding mode controller based on observer”, in 15th International Conference on Iranian Aerospace, Tehran, Iran, 2015 (in Persian)
[45] J. E. Slotine, Applied nonlinear control. Prentice-Hall, 1991.
[46] M. Nikusokhan., and S. H. Purtakdust., “Multilpe model kalman filter implementation in radome slope estimation of homing systems”, in 10th International Conference on Iranian Aerospace, Tehran, Iran, 2010 (in Persian)
[47] R. Rashunevsky., Guidance of Unmanned Aerial Vehicles, CRC Press, 2011.