مطالعه عدی سه‌ بعدی تأثیر زاویه دمش بر مشخصه‌های آیرودینامیکی یک مقطع بال با ایرفویل NACA 0012

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری / مرکز تحقیقات انرژی‌های تجدیدپذیر، واحد دماوند، دانشگاه آزاد اسلامی، دماوند

2 عضو هیات علمی / پژوهشگاه هوافضا، وزارت علوم

3 عضو هیات علمی / مرکز تحقیقات انرژی‌های تجدیدپذیر، واحد دماوند ، دانشگاه آزاد اسلامی ، دماوند ، ایران

چکیده

در این مطالعه تأثیر جت دمشی و زاویه دمش بر ضرایب و پارامترهای عملکرد آیرودینامیکی ایرفویل متقارن NACA0012 در Re=4×106 به‌صورت سه‌بعدی بررسی شده است. تغییرات ضرایب لیفت و درگ با به‌کارگیری دمش در نزدیکی لبه حمله ایرفویل برای زوایای حمله 12 تا 20 درجه بررسی شدند. با توجه به اعمال دمش از طریق سوراخ‌های دایره‌ای، از حل سه‌بعدی به‌منظور تحلیل و مطالعه استفاده شد. تحلیل انجام شده در این حالت با فرض جریان تراکم‌ناپذیر و پایا حول یک مقطع بال سه‌بعدی در نرم‌افزار فلوئنت انجام شد. نتایج نشان دادند دمش به‌طورکلی موجب افزایش در میزان لیفت تولیدی و کاهش درگ می­شود. نتایج نشان دادند که دمش در زوایای حمله کمتر از 14 درجه تأثیر ناچیزی بر ضرایب لیفت و درگ دارد، به همین دلیل است که فقط اثرات دمش در زوایای حمله بالا در نظر گرفته می‌شود. بیشترین افزایش در ضریب لیفت و بیشترین کاهش در ضریب درگ در زاویه حمله 16 درجه اتفاق می­افتد که زاویه واماندگی است. نتایج نشان می­دهد مؤثرترین زاویه دمش در افزایش ضریب لیفت، زاویه نزدیک به صفر درجه نسبت به سطح یا همان دمش مماسی است.

کلیدواژه‌ها


عنوان مقاله [English]

Three-dimensional numerical study of the effect of blowing angle on the aerodynamic characteristics of a wing section with NACA 0012 airfoil

نویسندگان [English]

  • Amir Fallahian 1
  • Arash Shams Taleghani 2
  • Kazem Esmailpour 3
1 PhD Candidate, Department of Mechanical Engineering, Islamic Azad University, Damavand Branch, Damavand
2 Assistant Professor, Aerospace Research Institute
3 Assistant Professor, Department of Mechanical Engineering, Islamic Azad University, Damavand Branch, Damavand
چکیده [English]

In this study, the effect of blowing angle on coefficients of aerodynamic of NACA0012 airfoil at Re=4×106 has been investigated. In the present research, the effect of three-dimensional blowing jet on the aerodynamic performance of the wing has been considered. The changes of lift and drag coefficients were studied by using the blowing near the leading edge of the airfoil for angles of attack of 12, 14, 16, 18 and 20 degrees. Due to the application of blowing through circular holes, a three-dimensional solution was used for the purpose of analysis and study, which will be computationally expensive. The analysis carried out in this case was performed with the assumption of incompressible and steady flow around a three-dimensional wing section in Fluent software. The results showed that the blowing has a negligible effect on the lift and drag coefficients at angles of attack less than 14 degrees. It is for this reason that only the effects of the blowing at high angles of attack are considered. The greatest increase in the lift coefficient and the greatest decrease in the drag coefficient occurs at the angle of attack of 16 degrees, which is the stall angle. The results showed that as the jet angle increases, the aerodynamic performance decreases.

کلیدواژه‌ها [English]

  • flow control
  • CFD
  • NACA0012 airfoil
  • blowing
  • lift and drag coefficients
[1] Ahangar, S. B., Bellur, K., Medici, E., Tajiri, K., Allen, J. S., Choi, C. K., “Optical properties and swelling of thin film perfluorinated sulfonic-acid ionomer”, ECS Transactions, 92(8): 197-212, (2019).
[2] Siala, F. F., Kamrani Fard, K., Liburdy, J. A., “Experimental study of inertia-based passive flexibility of a heaving and pitching airfoil operating in the energy harvesting regime”, Physics of Fluids, 32(1): 017101, (2020).
[3] Bayaniahangar, R., Ahangar, S. B., Zhang, Z., Lee, B. P., Pearce, J. M., “3-D printed soft magnetic helical coil actuators of iron oxide embedded polydimethylsiloxane”, Sensors and Actuators B: Chemical, 326: 128781, (2021).
[4] Monir, H. E., Tadjfar, M., Bakhtian, A., “Tangential synthetic jets for separation control”, Journal of fluids and structures, 45: 50-65, (2014).
[5] Wei, B., Wu, Y., Liang, H., Su, Z., Li, Y., “Flow control on a high-lift wing with microsecond pulsed surface dielectric barrier discharge actuator”, Aerospace Science and Technology, 96: 1-20, (2020).
[6] Lei, J., Zhang, J., Niu, J., “Effect of active oscillation of local surface on the performance of low Reynolds number airfoil”, Aerospace Science and Technology, 99: 25-40, (2020).
[7] Abdolahipour S, Mani M, Shams Taleghani A, Pressure Improvement on a Supercritical High-Lift Wing Using Simple and Modulated Pulse Jet Vortex Generator, Flow Turbulence Combustion, 109, 65–100, 2022.
[8] Abdolahipour S, Mani M, Shams Taleghani A, Enhancing the high-lift properties of a supercritical wing by means of a modulated pulse jet actuator, Tech. Phys. Lett. (Berlin: Springer) in press, 2022.
[9] Abdolahipour S, Mani M, Shams Taleghani A, Experimental Investigation of Flow Control on a High-Lift Wing Using Modulated Pulse Jet Vortex Generator, Journal of Aerospace Engineering, (ASCE) Vol. 35, Issue 5, 2022.
[10] Abdolahipour S, Mani M, Shams Taleghani A, Parametric study of a frequency-modulated pulse jet by measurements of flow characteristics. Physica Scripta, Vol. 96, No. 12, 2021.
[11] Abdolahipoor S, Mardani A, Shams Taleghani A, Effects of pulsed counter flow jets on aerothermodynamics performance of a Re-Entry capsule at supersonic flow, Aerospace Knowledge and Technology Journal, Vol. 5,No. 1, Pages 55-65, 2016. (in Persian)
[12] Shams Taleghani a, Numerical and Parametric investigation of Suction over a Cylinder for Reduction of Flow Unsteadiness and vortex, Journal of Mechanical Engineering, Vol. 49, Number 3, Pages 183-192, 2019. (in Persian)
[13] Shams Taleghani A, Shadaram A, Mirzaei M, Effects of duty cycles of the plasma actuators on improvement of pressure distribution above a NLF0414 airfoil, IEEE Transactions on Plasma Science;Vol. 40, No. 5, Pages 1434-1440, 2012.
[14] Salmasi A, Shadaram A, Shams Taleghani A, Effect of plasma actuator placement on the airfoil efficiency at post stall angles of attack, IEEE Transactions on Plasma Science, Vol. 41 No. 10, Pages 3079-3085, 2013.
[15] Shams Taleghani A, Shadaram A, Mirzaei M, Effects of duty cycles of the plasma actuators on improvement of the pressure distribution over NLF0414 airfoil, Modares Mechanical Engineering, Vol. 12, No. 1,pages 106-114, 2012. (in Persian)
[16] Salmasi A, Shadaram A, Mirzaei A, Shams Taleghani A, Numerical and experimental investigation on the effect of a plasma actuator on NLF0414 airfoils’ efficiency after the stall, Modares Mechanical Engineering, Vol. 12, No. 6, Pages 104-116, 2013. (in Persian)
[17] Shams Taleghani A, Shadaram A, Mirzaei M, Experimental Investigation of Active Flow Control for Changing Stall Angle of a NACA0012 Airfoil Using Plasma-Actuator, Fluid Mechanics and Aerodynamics Journal, Vol. 1, Pages 89-97, 2012. (in Persian)
[18] Mohammadi M, Taleghani A, Active Flow Control by Dielectric Barrier Discharge to Increase Stall Angle of a NACA0012 Airfoil, Arab J Sci Eng, Vol. 39, Pages 2363–2370, 2014.
[19] Mirzaei M, Taleghani A, Shadaram A, Experimental study of vortex shedding control using plasma actuator, Applied Mechanics and Materials, Vol. 186, Pages 75-86, 2012.
[20] Shams Taleghani A, Shadaram A, Mirzaei M, Abdolahipour S, Parametric study of a plasma actuator at unsteady actuation by measurements of the induced flow velocity for flow control, J Braz. Soc. Mech. Sci. Eng., Vol. 40, No. 4, pp.1-13, 2018.
[21] Taleghani A, Shadaram A, Mirzaei M, Experimental investigation of geometric and electrical characteristics by measurements of the induced flow, Modares Mechanical Engineering, Vol. 12, No. 5, pp. 132- 145, 2012. (in Persian)
[22] Najafi E, Abdollahipour S, Shams Taleghani A, Investigation of synthetic jet actuator position in delaying separation of a supercritical airfoil, journal of aeronautical engineering, Volume 24, Issue2, Pages83-96, march 2022.
[23] Najafi E, Abdollahipour S, Shams Taleghani A, Numerical Study of the Effects of Excitation Frequency of Synthetic Jet Actuator on Aerodynamic Performance of a Supercritical Airfoil, Aerospace Knowledge and Technology Journal, Vol. 11,No. 1, 2022. (in Persian)
[24] Taeibi Rahni M, Shams Taleghani A, Sheikholeslam M, Ahmadi G, Computational simulation of water removal from a flat plate, using surface acoustic waves, Wave Motion, Volume 111, No. 12, 2022.
[25] Sheikholeslam Noori M, Taeibi Rahni M, Shams Taleghani A, Numerical analysis of droplet motion over a flat plate due to surface acoustic waves, Microgravity Science and Technology, Vol. 32, No. 4, Pages 647-660, 2020.
[26] Sheikholeslam Noori M, Shams Taleghani A, Taeibi Rahni M, Surface acoustic waves as control actuator for drop removal from solid surface, Fluid Dynamics Research, Vol. 53, No. 4, 2021 .
[27] Sheikholeslam Noori M, Shams Taleghani A, Taeibi Rahni M, Phenomenological Investigation of Drop Manipulation Using Surface Acoustic Waves, Microgravity Science and Technology, Vol. 32, No. 6, Pages 1147-1158, 2020.
[28] Sheikholeslam Noori M, Taeibi Rahni M, Taleghani A, Effects of contact angle hysteresis on drop manipulation using surface acoustic waves, Theoretical and Computational Fluid Dynamics, Vol. 34, No. 1, Pages 145-162, 2020.
[29] Ghanbari Motlagh A, Abdolahipour S, Shams taleghani A, Flow control by magnetohydrodynamic field method at the supersonic air intake, Aerospace Knowledge and Technology Journal,Vol. 9, No. 1,Pages 157-170, 2020. (in Persian)
[30] Shams taleghani A, Ghanbari Motlagh A, Abdolahipour S, Numerical Study of the Effects of Magneto hydrodynamic Field on Shock-Induced Flow Separation, Fluid Mechanics and Aerodynamics Journal, Vol. 9, No. 2, Pages 17-28, 2021. (in Persian)
[31] Izadi M, Khaki R, Shams Taleghani A, A study of the effects of smart flap on model airfoil of fighter, journal of aeronautical engineering, Volume22, Issue 2, Pages 80-97, april 2020. (in Persian)
[32] Abdolahipour S, Mani M, Shams Taleghani A, Experimental Investigation of Aerodynamic Characteristics of a Supercritical Two-Element High-Lift Airfoil, Aerospace Knowledge and Technology Journal, 10, 1, 2021. (in Persian)
[33] Chen H., Chen B., Aerodynamic Performance Enhancement of Tiltrotor Aircraft Wings Using Double‑Row Vortex Generators, International Journal of Aeronautical and Space Sciences, 22(4), pp.802-812, 2021.
[34] Yadegari M, Shams Taleghani A, Porous Media Applications in Shock Attenuation on Suction side of an Airfoil, Aerospace Knowledge and Technology Journal,Vol. 3, No. 1, Pages 61-71, 2014. (in Persian)
[35] Yadegari M, Shams Taleghani A, A Parametric Study for Passive Control of Shock-Boundary Layer Interaction of an Airfoil with Porous Media in a Transonic Flow, Fluid Mechanics and Aerodynamics Journal, Vol. 3, Number 4, Pages 73-86, 2015. (in Persian)
[36] Yadegari M, Shams Taleghani A, Numerical Study of Shock-Boundary Layer Interaction on an Airfoil with Cavity and Porous Surface: Parametric Investigation in a Transonic Flow, Journal of Solid and Fluid Mechanics, Vol. 6, No. 2, Pages 271-284, 2016. (in Persian)
[37] James, S .E., Suryan A, Sebastian J. J., Mohan, A. and Kim, H. D., “Comparative study of boundary layer control around an ordinary airfoil and a high lift airfoil with secondary blowing”, Comput. Fluids. 164: 50–63, (2018).
[38] Boualem, K., Yahiaoui, T., and Azzi, A., “Numerical investigation of improved aerodynamic performance of a NACA 0015 airfoil using synthetic jet”,Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 11: 487–491, (2017).
[39] Tadjfar, M., and Asgari, E., “Active flow control of dynamic stall by means of continuous jet flow at Reynolds number of 1×106”, J. Fluid Eng. 140: 1–22, (2018).
[40] Chapin, V. and Bénard, E., “Active Control of a Stalled Airfoil through Steady or Unsteady Actuation Jets”, Journal of Fluids Engineering, Vol. 137, No. 9, (2015).
[41] Müller-Vahl, H. F., Strangfeld, C., Nayeri, C. N., Paschereit, C. O. and Greenblatt, D., “Control of Thick Airfoil, Deep Dynamic Stall Using Steady Blowing”, AIAA Journal, Vol. 53, No. 2, Pp. 277–295, (2015).
[42] Müller-Vahl, H. F., Nayeri, C. N., Paschereit, C. O. and Greenblatt, D., “Dynamic Stall Control Via Adaptive Blowing”, Renewable Energy, Vol. 97, Pp. 47–64, (2016).
[43] Puri, K., Laufer, M., Müller-Vahl, H., Greenblatt, D. and Frankel S. H., “Computations of Active Flow Control Via Steady Blowing over a NACA-0018 Airfoil: Implicit LES and RANS Validated against Experimental Data”, in: 2018 AIAA Aerospace Sciences Meeting, Pp. 0792, (2018).
[44] Prakash, B., Elstein, F. M. and Granyó J. M. B., “Parametric Analysis of Active Flow Control Using Steady Suction and Steady Blowing”, in: Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering, Spain, July 4-8, Pp. 1712-1721, (2017).
[45] Bounecer, A., & Bahl, L., “Numerical Study of an Incompressible Laminar Flow Around a NACA Airfoil With a Blowing Control”, Sciences & Technology. Vol. 3, No. 2, pp 27-35, (2018).
[46] Akbarzadeh, P., Lehdarboni, A. A., & Derazgisoo, S. M., “Low Reynolds unsteady flow simulation around NACA0012 airfoil with active flow control”, Meccanica. Vol. 53, No.14, pp. 3457-3476, (2018).
[47] Kim, J., Park, Y. M., Lee, J., Kim, T., Kim, M., Lim, J., & Jee, S., “Numerical investigation of jet angle effect on airfoil stall control”, Applied Sciences, Vol. 9, No.15, pp. 2960, (2019).
[48] Eto, K., Kondo, Y., Fukagata, K., & Tokugawa, N., “Assessments of friction drag reduction on a Clark-Y airfoil by uniform blowing”, AIAA journal, Vol. 57, No. 7, pp. 2774- 2782, (2019).
[49] Abramova, K. A., & Soudakov, V. G., “Numerical optimization of flow control by tangential jet blowing on transonic airfoil”, 31st Congress of the International Council of the Aeronautical Sciences, Belo Horizonte, Brazil, (2018).
[50] Farhadi, A., Ghoshtasbi, Rad, E., & Emdad, H., “Aerodynamic Multi-Parameter Optimization of NACA0012 Airfoil Using Suction/Blowing Jet Technique”, Arabian Journal for Science and Engineering, Vol. 42, No. 5, pp. 1727-1735, (2017).
[51] S. Abdolahipour, M. Mani, and P. M. Render, Numerical Investigation into the Aerodynamic Characteristics of Wings with Triangular Shape Damage in Different Span Positions.   15th Annual Conference of the CFD Society of Canada, CFD, pp. 27-31, 2007.
[52] S. Abdolahipour, M. Mani, and G. M. Ahmadi Dehaghi, Numerical and Experimental Study of the Influence of Damage on the Aerodynamic Characteristics of a Finite Wing. Fluids Engineering Division Summer Meeting, vol. 44403, pp. 1441-1447, 2011.
[54] Martinat, G., Braza, M., Hoarau, Y., and Harran, G., "Turbulence modelling of the flow past a pitching NACA0012 airfoil at 105 and 106 Reynolds numbers", Journal of Fluids and Structures Vol. 24, No. 8, pp. 1294–1303, (2008).