افزایش برداشت توان الکتریکی از میکروتیر پیزوالکتریک به روش الگوریتم ژنتیک با بهینه کردن هندسی و ماده ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد / گروه مکانیک، واحد خمینی‌شهر، دانشگاه آزاد اسلامی، خمینی شهر، اصفهان

2 عضو هیات علمی / گروه مکانیک، واحد خمینی‌شهر، دانشگاه آزاد اسلامی، خمینی شهر، اصفهان

چکیده

با توجه به رابطه مستقیم میان تغییر شکل حاصل از ارتعاش و ولتاژ تولید شده در سطح میکروتیر پیزوالکتریک ، بررسی نقش ابعاد هندسی این قطعات در ولتاژ تولید شده در اعمال یک نیروی ثابت از اهمیت بسزایی برخوردار است. در این تحقیق به منظور بهینه سازی ابعاد هندسی میکرو تیر پیزوالکتریک از ابزار الگوریتم ژنتیک نرم افزار متلب استفاده می­گردد. به این منظور ابتدا رابطه تحلیلی حاکم بر یک میکرو­تیر تک لایه پیزو­الکتریک در مدل اویلر برنولی استخراج شده سپس پارامترهای طول تیر، طول لایه پیزو­الکتریک، پهنای تیر، ضخامت لایه پیزوالکتریک و ضخامت تیر برای بیشینه­کردن ولتاژ برداشت شده به عنوان تابع هدف در بهینه­سازی در نظر گرفته می­شوند. برای اطمینان از دقت رابطه تحلیلی ارائه شده در نرم افزار آباکوس میکرو تیر تک لایه پیزوالکتریک مذکور مدل شده که مقایسه نتایج از انطباق 88 درصدی رابطه تحلیلی و مدل المان محدود حکایت دارد. همچنین مشاهده می­شود بهینه سازی با استفاده از ابزار الگوریتم ژنتیک نرم افزار متلب در صورت انتخاب اندازه جمعیت مناسب می تواند تا 59 درصد ولتاژ تولید شده را افزایش دهد و در عین حال بیش از 50 درصد ابعاد میکرو تیر مذکور را کاهش دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Increasing the electric power harvesting from the piezoelectric micro beam by the genetic algorithm method by optimizing the geometrical shape and material

نویسندگان [English]

  • Mehran Eghdami 1
  • Majid Jabbari 2
1 Master, Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr/Isfahan, Iran
2 Assistant Professor, Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr/Isfahan, Iran
چکیده [English]

Considering the direct relationship between the shape change resulting from vibration and the voltage generated on the surface of the piezoelectric micro wire, it is very important to investigate the role of the geometric dimensions of these parts in the voltage generated by applying a constant force. In this research, in order to optimize the geometric dimensions of the piezoelectric micro beam, the genetic algorithm tool of MATLAB software is used. For this purpose, firstly, the analytical relationship governing a single piezoelectric layer micro beam in the Euler-Bernoulli model was extracted, then the parameters of beam length, piezoelectric layer length, beam width, piezoelectric layer thickness and beam thickness were taken to maximize the voltage. They are considered as the objective function in optimization. In order to ensure the accuracy of the analytical relationship presented in Abaqus software, the mentioned piezoelectric single layer micro beam has been modeled, and the comparison of the results indicates that the analytical relationship and the finite element model match 88%. Also, it can be seen that optimization using the genetic algorithm tool of MATLAB software can increase the generated voltage by 59% and at the same time reduce the dimensions of the mentioned micro beam by more than 50%.

کلیدواژه‌ها [English]

  • genetic algorithm
  • numerical method
  • piezoelectric
  • optimization
  • voltage
[1] M. Rasouli and L. S. J. Phee, Energy sources and their development for application in medical devices, Expert Rev. Med. Devices, Vol. 7, pp. 693–709, 2018.
[2] S. Nabavi, G. Yaralioglu, High Quality Factor Resonant Mass Sensors Based on CMUT for Immersion in Liquid, in 14th international workshop on Micromachined Ultrasonic Transducers (MUT), 2015.
[3] P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, Energy harvesting from human and machine motion for wireless electronic devices, in Proc. IEEE, Vol. 96, pp. 1457–1486, 2018.
[4] S. R. Anton and D. J. Inman, Vibration energy harvesting for unmanned aerial vehicles, in Proc. The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, p.692824, 2019.
[5] S. P. Beeby, M. J. Tudor, and N. M. White, Energy harvesting vibration sources for microsystems applications, Meas. Sci. Technol., Vol. 17, pp. 175-181, 2006.
[6] C. C. Enz, A. El-Hoiydi, J. D. Decotignie, and V. Peiris, WiseNET: an ultralow-power wireless sensor network solution, Computer (Long. Beach. Calif)., Vol. 37, pp. 62– 70, 2017.
[7] G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, Bulk micromachining of silicon, in Proc. IEEE, Vol. 86, pp. 1536–1551, 1998.
[8] J. M. Bustillo, R. T. Howe, and R. S. Muller, Surface micromachining for microelectromechanical systems, in Proc. IEEE, Vol. 86, pp. 1552–1574, 1998
[9] E. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process), Microelectron. Eng., Vol. 4, pp. 35–56, 1986.
[10] L. Zhang, N. Jangkrajarng, S. Bhattacharya, and C. J. R. Shi, Parasitic-aware optimization and retargeting of analog layouts: A symbolic-template approach, Comput. Des. Integr. Circuits Syst. IEEE Trans., Vol. 27, pp. 791–802, 2018.
[11] A. A. I. Ahmed and L. Zhang, Fast parasitic-aware synthesis methodology for highperformance analog circuits, in Proc. IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2155–2158, 2012.
[12] C.-M. Ho and Y.-C. Tai, Micro-electro-mechanical-systems (MEMS) and fluid flows, Annu. Rev. Fluid Mech., Vol. 30, pp. 579–612, 1998.
[13] R. W. Miles, K. M. Hynes, and I. Forbes, Photovoltaic solar cells: An overview of stateof-the-art cell development and environmental issues, Prog. Cryst. Growth Charact. Mater., Vol. 51, pp. 1–42, 2015.
[14] J. Simon and T. Caroff, Device for generating current and/or voltage based on a thermoelectric module placed in a flowing fluid, Google Patents, 2015.
[15] J. Chen, Z. Yan, and L. Wu, The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator, J. Appl. Phys., Vol. 79, pp. 8823–8828, 1996.
[16] S. R. Anton and H. A. Sodano, A review of power harvesting using piezoelectric materials (2003–2006), Smart materials and Structures, Vol. 16, R1, 2007.
[17] A. E. Kubba and K. Jiang, A comprehensive study on technologies of tyre monitoring systems and possible energy solutions, Sensors, Vol. 14, pp. 10306-10345, 2014.
[18] J. Baker, S. Roundy, and P. Wright, Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks, in 3rd international energy conversion engineering conference, pp. 5617, 2005.
[19] S. Roundy, P. K. Wright, and J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes, Computer communications, Vol. 26, pp. 1131-1144, 2003.
[20] J. Yang, H. Zhou, Y. Hu, and Q. Jiang, Performance of a piezoelectric harvester in thickness-stretch mode of a plate,  ieee transactions on ultrasonics, ferroelectrics, and frequency control, Vol. 52, pp. 1872-1876, 2005.
[21] J. Cho, M. Anderson, R. Richards, D. Bahr, and C. Richards, Optimization of electromechanical coupling for a thin-film PZT membrane: I. Modeling, Journal of Micromechanics and Microengineering, Vol. 15 , pp. 1797, 2005.
[22] C. D. Richards, M. J. Anderson, D. F. Bahr, and R. F. Richards, Efficiency of energy conversion for devices containing a piezoelectric component, Journal of Micromechanics and Microengineering, Vol. 14, pp. 717, 2004.
[23] T. J. Johnson, D. Charnegie, W. W. Clark, M. Buric, and G. Kusic, Energy harvesting from mechanical vibrations using piezoelectric cantilever beams." in smart structures and materials, pp. 61690D-61690D-12, 2006.
[24] Jabbari, Majid, Mostafa Ghayour, and Hamid Reza Mirdamadi, Experimental and numerical results of dynamics behavior of a nonlinear piezoelectric beam, Mechanics of Advanced Materials and Structures Vol 23, pp. 853-864, 2016.
[25] Jabbari, Majid, Mostafa Ghayour, and Hamid Reza Mirdamadi, Energy harvesting of a multilayer piezoelectric beam in resonance and off-resonance cases, Journal of Engineering Materials and Technology 139.3, 2017.
[26] A. L. Araújo, V. S. Carvalho, C. M. M. Soares, J. Belinha, and A. J. M. Ferreira, Vibration analysis of laminated soft core sandwich plates with piezoelectric sensors and actuators, Compos. Struct, 2016.
[27] N. Chidambaram, A. Mazzalai, and P. Muralt, Measurement of effective piezoelectric coefficients of PZT thin films for energy harvesting application with interdigitated
electrodes,  IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 59, no. 8, pp. 1624–1631, 2012.
[28] A. H. Meitzler, H. F. Tiersten, A. W. Warner, D. Berlincourt, G. A. Couqin, and F. S. Welsh III, IEEE standard on piezoelectricity, Society, 1988.
[29] S. Roundy and P. K. Wright, A piezoelectric vibration based generator for wireless electronics, Smart Mater. Struct., vol. 13, no. 5, pp. 1131, 2004.
[30] J. I. Daniel, Engineering vibration, Prentice-Hall, Inc., New Jersey, 2001.
[31] R. C. Hibbeler, Mechanics of Materials, Prentice Hall, 1997.
[32] S. Kumar, R. Srivastava, and R. K. Srivastava, Design and analysis of smart piezo cantilever beam for energy harvesting, Ferroelectrics, vol. 505, no. 1, pp. 159–183, 2016.
[33] M. Mitchell, An introduction to genetic algorithms, MIT press, 1998.
[34] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing, vol. 53. Springer, 2003
[35] S. Nabavi and L. Zhang, Design and Optimization of Wideband Multimode Piezoelectric MEMS Vibration Energy Harvesters, in Proc. Eurosesnosors, Paris, France, vol. 1, no. 4, p. 586, 2017.
[36] J. I. Daniel, Engineering vibration, Prentice-Hall, Inc., New Jersey, 2001.