کنترل فعال ارتعاشات و مانور فضاپیمای انعطاف‏پذیر با الگوریتم‏‏های مقاوم و مود لغزشی ترمینال سریع غیرتکین

نوع مقاله : مقاله پژوهشی

نویسنده

عضو هیات علمی / عضو هیئت‌علمی پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری، تهران

چکیده

در این مقاله، طراحی الگوریتم‏های مقاوم فعال ارتعاشات و مود لغزشی ترمینال سریع غیرتکین برای مانور وضعیت فضاپیمای انعطاف‏پذیر بررسی شده است. در ابتدا مدل دینامیک غیرخطی کاملاً کوپل صلب-انعطاف‏پذیر فضاپیما در مانور وضعیت سه محوره با استفاده از معادلات لاگرانژ شبه مختصات استخراج شده است. سپس الگوریتمی برای کنترل هم‌زمان وضعیت و ارتعاشات سیستم مبتنی ‏بر سطح لغزش ترمینال غیرتکین سریع که به همگرایی خطاهای ردگیری وضعیت و سرعت‏های زاویه‏ای (به صفر) در زمان محدود و در حضور نامعینی‏ها و اغتشاشات خارجی منجر می‏شود، طراحی شده است. در ادامه ارتعاشات باقی‏مانده ناشی از دینامیک پنل‏های انعطاف‏پذیر حین و پس از مانور با به‌کارگیری یک الگوریتم مقاوم کنترل فعال ارتعاشات با استفاده از وصله‏های حسگر/عملگر پیزوالکتریک به‌صورت نمایی کاهش یافته است. همگرایی زمان محدود سیستم حلقه بسته با رویکرد هیبرید کنترلی و با به‌کارگیری تئوری پایداری لیاپانوف اثبات شده است. شبیه‏سازی‏های عددی با استفاده از روش رانگ-کوتای مرتبه 4، عملکرد و مزیت به‏کارگیری هم‌زمان کنترلرهای مقاوم وضعیت و ارتعاشات پیشنهادی در مقایسه با رویکردهای رایج کنترل سیستم‏های دینامیکی با انعطاف‏پذیری سازه‏ای را ارائه می‏دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Active vibration and maneuver control of a flexible spacecraft using robust and non-singular fast terminal sliding mode algorithms

نویسنده [English]

  • Milad Azimi
Assistant Professor, Aerospace Research Institute, Ministru of science, research and technology, Tehran, Iran
چکیده [English]

This paper deals with a robust active vibration and non-singular fast terminal sliding mode control design for flexible spacecraft attitude maneuvers. First, the fully coupled nonlinear rigid-flexible dynamic model of the spacecraft in the three-axis maneuver is derived using Lagrange's equations in terms of quasi-coordinates. Then, the attitude control law is designed based on a fast non-singular terminal sliding surface, which leads to the zero convergence of attitude tracking and angular velocity errors in a finite time in the presence of external disturbances and parameter uncertainties. Next, the flexible panels' residual vibrations during and after the maneuver have been reduced exponentially using a robust active vibration control algorithm through piezoelectric sensor/actuator patches. It has been proven that this algorithm ensures the stability of the closed loop system and eliminates the need for conservative assumptions regarding uncertainties and external disturbances at the upper limit. The finite-time convergence of the closed-loop system with a hybrid control approach is proved by the Lyapunov stability theory. The numerical simulations using 4th order Runge-Kutta approach show the simultaneous utilization of the proposed attitude and vibration controllers' performance compared to the classical approaches for dynamical systems with structural flexibility.

کلیدواژه‌ها [English]

  • active vibration control
  • non-singular terminal sliding mode
  • piezoelectric
  • robust control
  • uncertainty
[1] G. He, et al., Dynamic modeling and orbit maneuvering response analysis for a three-axis attitude stabilized large scale flexible spacecraft installed with hinged solar arrays, Mechanical systems and signal processing, Vol. 162, No., pp. 108083, 2022.
[2] F. Angeletti, et al., Design and performance assessment of a distributed vibration suppression system of a large flexible antenna during attitude manoeuvres, Acta Astronautica, Vol. 176, No., pp. 542-557, 2020.
[3] L. Hou and H. Sun, Anti-disturbance attitude control of flexible spacecraft with quantized states, Aerospace Science and Technology, Vol. 99, No., pp. 105760, 2020.
[4] L. Qian, et al., Fault-tolerant control and vibration suppression of flexible spacecraft: An interconnected system approach, Chinese Journal of Aeronautics, Vol. 33, No. 7, pp. 2014-2023, 2020.
[5] m. azimi, M.J. Chitgari, and S.H. Hashemi Mehne, Online Active Vibration Control and Health Monitoring of a Cracked Flexible Spacecraft Panels Equipped with Piezoelectric Patches During Attitude Maneuver, Aerospace Knowledge and Technology Journal, Vol. 10, No. 2, pp. 37-53, 2022. (in Persian).
[6] C. Zhong, Z. Chen, and Y. Guo, Attitude control for flexible spacecraft with disturbance rejection, IEEE Transactions on Aerospace and Electronic Systems, Vol. 53, No. 1, pp. 101-110, 2017.
[7] J. Tao, T. Zhang, and Q. Liu, Novel finite-time adaptive neural control of flexible spacecraft with actuator constraints and prescribed attitude tracking performance, Acta Astronautica, Vol. 179, No., pp. 646-658, 2021.
[8] C.-C. Chen and Y.-T. Chen, Control design of nonlinear spacecraft system based on feedback linearization approach, IEEE Access, Vol. 8, No., pp. 116626-116641, 2020.
[9] Z. Chen, et al., Adaptive backstepping control design for uncertain rigid spacecraft with both input and output constraints, IEEE Access, Vol. 6, No., pp. 60776-60789, 2018.
[10] G. Duan, High-order fully actuated system approaches: Part VIII. Optimal control with application in spacecraft attitude stabilisation, International Journal of Systems Science, Vol. 53, No. 1, pp. 54-73, 2022.
[11] N. Vafamand, Adaptive robust neural-network-based backstepping control of tethered satellites with additive stochastic noise, IEEE Transactions on Aerospace and Electronic Systems, Vol. 56, No. 5, pp. 3922-3930, 2020.
[12] Y. Liu, et al., Event-triggered sliding mode control for attitude stabilization of a rigid spacecraft, IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 50, No. 9, pp. 3290-3299, 2018.
[13] J. Fu, et al., Robust neural-network-based quasi-sliding-mode control for spacecraft-attitude maneuvering with prescribed performance, Aerospace Science and Technology, Vol. 112, No., pp. 106667, 2021.
[14] P. Ouyang, J. Acob, and V. Pano, PD with sliding mode control for trajectory tracking of robotic system, Robotics and Computer-Integrated Manufacturing, Vol. 30, No. 2, pp. 189-200, 2014.
[15] M. Boukattaya, M. Jallouli, and T. Damak, On trajectory tracking control for nonholonomic mobile manipulators with dynamic uncertainties and external torque disturbances, Robotics and autonomous systems, Vol. 60, No. 12, pp. 1640-1647, 2012.
[16] H. Pan, et al., A novel global fast terminal sliding mode control scheme for second-order systems, IEEE Access, Vol. 8, No., pp. 22758-22769, 2020.
[17] X. Lin, X. Shi, and S. Li, Adaptive tracking control for spacecraft formation flying system via modified fast integral terminal sliding mode surface, IEEE Access, Vol. 8, No., pp. 198357-198367, 2020.
[18] K. Eliker and W. Zhang, Finite-time adaptive integral backstepping fast terminal sliding mode control application on quadrotor UAV, International Journal of Control, Automation and Systems, Vol. 18, No. 2, pp. 415-430, 2020.
[19] X. Yu and M. Zhihong, Fast terminal sliding-mode control design for nonlinear dynamical systems, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 49, No. 2, pp. 261-264, 2002.
[20] Y. Feng, X. Yu, and Z. Man, Non-singular terminal sliding mode control of rigid manipulators, Automatica, Vol. 38, No. 12, pp. 2159-2167, 2002.
[21] C. Liu, et al., Robust adaptive variable structure tracking control for spacecraft chaotic attitude motion, IEEE Access, Vol. 6, No., pp. 3851-3857, 2018.
[22] D. Lee, G. Vukovich, and H. Gui, Adaptive variable-structure finite-time mode control for spacecraft proximity operations with actuator saturation, Advances in Space Research, Vol. 59, No. 10, pp. 2473-2487, 2017.
[23] Y. Miao, et al., Adaptive fast nonsingular terminal sliding mode control for attitude tracking of flexible spacecraft with rotating appendage, Aerospace Science and Technology, Vol. 93, No., pp. 105312, 2019.
[24] C. Jing, et al., Adaptive nonsingular terminal sliding mode control for attitude tracking of spacecraft with actuator faults, IEEE Access, Vol. 7, No., pp. 31485-31493, 2019.
[25] P. Li, et al. Fast nonsingular integral terminal sliding mode control for nonlinear dynamical systems. in 53rd IEEE conference on decision and control. 2014. IEEE.
[26] L. Yang and J. Yang, Nonsingular fast terminal sliding‐mode control for nonlinear dynamical systems, International Journal of Robust and Nonlinear Control, Vol. 21, No. 16, pp. 1865-1879, 2011.
[27] C. Pukdeboon and P. Siricharuanun, Nonsingular terminal sliding mode based finite-time control for spacecraft attitude tracking, International Journal of Control, Automation and Systems, Vol. 12, No. 3, pp. 530-540, 2014.
[28] S. Li, Z. Wang, and S. Fei, Comments on the paper: Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control, Aerospace Science and Technology, Vol. 15, No. 3, pp. 193-195, 2011.
[29] A.-M. Zou, et al., Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 41, No. 4, pp. 950-963, 2011.
[30] Y. Xia, et al., Finite-time tracking control of rigid spacecraft under actuator saturations and faults, in Finite Time and Cooperative Control of Flight Vehicles. 2019, Springer. p. 141-169.
[31] K. Lu and Y. Xia, Adaptive attitude tracking control for rigid spacecraft with finite-time convergence, Automatica, Vol. 49, No. 12, pp. 3591-3599, 2013.
[32] Z. Wang, et al., Active vibration suppression in flexible spacecraft with optical measurement, Aerospace Science and Technology, Vol. 55, No., pp. 49-56, 2016.
[33] C. Zhou and D. Zhou, Robust dynamic surface sliding mode control for attitude tracking of flexible spacecraft with an extended state observer, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 231, No. 3, pp. 533-547, 2017.
[34] Q. Yuan, Y. Liu, and N. Qi, Active vibration suppression for maneuvering spacecraft with high flexible appendages, Acta Astronautica, Vol. 139, No., pp. 512-520, 2017
[35] S. Xu, et al., Flexible satellite attitude maneuver via adaptive sliding mode control and active vibration suppression, AIAA journal, Vol. 56, No. 10, pp. 4205-4212, 2018.
[36] m. azimi, M.J. Chitgari, and S.H. Hashemi Mehne, Online Active Vibration Control and Health Monitoring of a Cracked Flexible Spacecraft Panels Equipped with Piezoelectric Patches During Attitude Maneuver, Aerospace Knowledge and Technology Journal, Vol. 10, No. 2, pp. 37-53, 2022.
[37] L. Meirovitch, Hybrid state equations of motion for flexible bodies in terms of quasi-coordinates, Journal of guidance, control, and dynamics, Vol. 14, No. 5, pp. 1008-1013, 1991.
[38] Z. Zhu, Y. Xia, and M. Fu, Attitude stabilization of rigid spacecraft with finite‐time convergence, International Journal of Robust and Nonlinear Control, Vol. 21, No. 6, pp. 686-702, 2011.
[39] M. Krstic, P.V. Kokotovic, and I. Kanellakopoulos, Nonlinear and adaptive control design. 1995: John Wiley & Sons, Inc.