مروری بر ماهواره‌های انعطاف‌پذیر: تحلیل دینامیک، بررسی چالش‌ها و رویکردهای کنترل وضعیت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری / دانشکده مهندسی برق، گروه کنترل، دانشگاه علم و صنعت ایران

2 عضو هیات علمی / دانشکده مهندسی برق، گروه کنترل، دانشگاه علم و صنعت ایران

چکیده

با توسعه روزافزون کاربردهای فناوری فضایی و به تبع آن افزایش الزامات و نیازمندی­های مطرح در ماموریت­های فضایی، بسیاری از ماهواره­ها از ساختار صلب به انعطاف­پذیر تغییر ماهیت داده­اند. کنترل وضعیت ماهواره­های انعطاف­پذیر نسبت به ماهواره­های صلب با چالش­های بیشتری مواجه بوده و کنترل وضعیت آن­ها پیچیده­تر می­باشد. در این مقاله­ی مروری به بررسی چالش­ها و معماری­های ماهواره­ی انعطاف­پذیر پرداخته شده و رفتار دینامیکی آن­ها مورد تحلیل قرار گرفته است. همچنین، مروری جامع بر رویکردهای کنترل وضعیت مختلفی که در سالیان اخیر به منظور کنترل وضعیت ماهواره­های انعطاف­پذیر توسط محققان پیشنهاد گردیده­اند انجام گردیده است و مزایا و معایب هریک از آن­ها نسبت به سایر رویکردها مورد ارزیابی قرار گرفته است. در نهایت، بر اساس مرور پژوهش­های انجام شده در این حوزه توصیه­هایی جهت طراحی کنترل­کننده­های وضعیت مناسب برای ماهواره­های انعطاف­پذیر بیان گردیده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Survey on flexible satellite: dynamic analysis, challenges and attitude control strategies

نویسندگان [English]

  • Mohammad Fathi 1
  • Hossein bolandi 2
1 Electrical Engineering Department, Iran University of Science and Tecfhnology (IUST), Tehran, Iran
2 Electrical Engineering Department - Iran University of Science and Technology - Tehran - Iran
چکیده [English]

With the increasing development of space technology applications and the consequent increase in the requirements of space missions, many satellites have changed their nature from rigid to flexible structures. Attitude control of flexible satellites is more challenging than rigid satellites. This survey examines the challenges and architectures of flexible satellites and analyzes their dynamic behavior. Moreover, a comprehensive review of various attitude control approaches which have been proposed by researchers in recent years for flexible satellites has been done and the advantages and disadvantages of each of them are compared and evaluated to other approaches. Finally, based on the conducted survey, some recommendations have been made for designing an appropriate attitude controller strategy for flexible satellites.

کلیدواژه‌ها [English]

  • Flexible Satellite
  • Flexible Modes
  • Dynamic Analysis
  • Attitude Control
[1] L. Mazzini, Flexible Spacecraft Dynamics, Control and Guidance, 1st ed. Springer, 2016.
[2] A. Viquerat, M. Schenk, V. Lappas, and B. Sanders, “Functional and qualification testing of the inflateSail technology demonstrator,” in 2nd AIAA Spacecraft Structures Conference, 2015, pp. 1–12.
[3] S. Deng, T. Meng, H. Wang, C. Du, and Z. Jin, “Flexible attitude control design and on-orbit performance of the ZDPS-2 satellite,” Acta Astronaut., vol. 130, no. January, pp. 147–161, 2017.
[4] B. Wie and C. T. Plescia, “Attitude stabilization of flexible spacecraft during stationkeeping maneuvers,” J. Guid. Control. Dyn., vol. 7, no. 4, pp. 430–436, 1984.
[5] L. Liu, X. Wang, S. Sun, D. Cao, and X. Liu, “Dynamic characteristics of flexible spacecraft with double solar panels subjected to solar radiation,” Int. J. Mech. Sci., vol. 151, pp. 22–32, 2019.
[6] R. Mohsenipour, H. Nemati, M. Nasirian, and A. K. Nia, “Attitude Control of a Flexible Satellite by Using Robust Control Design Methods,” Intell. Control Autom., vol. 04, no. 03, pp. 313–326, 2013.
[7] L. Cao, B. Xiao, M. Golestani, and D. Ran, “Faster Fixed-Time Control of Flexible Spacecraft Attitude Stabilization,” IEEE Trans. Ind. Informatics, vol. 16, no. 2, pp. 1281–1290, 2020.
[8] S. M. Esmaeilzadeh, M. Golestani, and S. Mobayen, “Chattering-free Fault-tolerant Attitude Control with Fast Fixed-time Convergence for Flexible Spacecraft,” Int. J. Control. Autom. Syst., vol. 19, no. 2, pp. 767–776, 2021.
[9] M. M. Ataei, H. Salarieh, H. N. Pishkenari, and H. Jalili, “Boundary control design for vibration suppression and attitude control of flexible satellites with multi-section appendages,” Acta Astronaut., vol. 173, no. August 2019, pp. 22–30, 2020.
[10] L. Zhang, S. Xu, X. Ju, and N. Cui, “Flexible satellite control via fixed-time prescribed performance control and fully adaptive component synthesis vibration suppression,” Nonlinear Dyn., vol. 100, no. 4, pp. 3413–3432, 2020.
[11] Y. Li and F. Yang, “Robust adaptive attitude control for non-rigid spacecraft with quantized control input,” IEEE/CAA J. Autom. Sin., vol. 7, no. 2, pp. 472–481, 2020.
[12] J. R. Damaren, Christopher; De Ruiter, Anton H. J.; Forbes, Spacecraft dynamics and control : an introduction, 1st Editio. 2013.
[13] F. Landis Markley and J. L. Crassidis, Space Technology Library Fundamentals of Spacecraft Attitude Determination and Control. Springer, 2014.
[14] A. Murilo, P. J. de Deus Peixoto, L. C. Gadelha de Souza, and R. V. Lopes, “Real-time implementation of a parameterized Model Predictive Control for Attitude Control Systems of rigid-flexible satellite,” Mech. Syst. Signal Process., vol. 149, 2021.
[15] T. Vil Cherd and N. Hazadura, “Optimal control on the attitude rotation of a flexible satellite model base on tetrahedral configured reaction wheels,” J. Phys. Conf. Ser., vol. 1878, no. 1, 2021.
[16] Z. Wang, Y. Jia, S. Xu, and L. Tang, “Active vibration suppression in flexible spacecraft with optical measurement,” Aerosp. Sci. Technol., vol. 55, pp. 49–56, 2016.
[17] S. Di Gennaro, “Output stabilization of flexible spacecraft with active vibration suppression,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 3, pp. 747–759, 2003.
[18] M. Y. Ovchinnikov and D. S. Roldugin, “A survey on active magnetic attitude control algorithms for small satellites,” Prog. Aerosp. Sci., vol. 109, no. May, pp. 0–1, 2019.
[19] B. Li, Q. Hu, Y. Yu, and G. Ma, “Observer-Based Fault-Tolerant Attitude Control for Rigid Spacecraft,” IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 5, pp. 2572–2582, 2017.
[20] P. C. Hughes and T. M. Abdel-Rahman, “Stability of proportional-plus-derivative-plus-integral control of flexible spacecraft,” J. Guid. Control. Dyn., vol. 2, no. 6, pp. 499–503, 1979.
[21] J. Ben-Asher, J. A. Burns, and E. M. Cliff, “Time-optimal slewing of flexible spacecraft,” J. Guid. Control. Dyn., vol. 15, no. 2, pp. 360–367, 1992.
[22] K. A. Ford and C. D. Hall, “Flexible spacecraft reorientations using gimbaled momentum wheels,” J. Astronaut. Sci., vol. 49, no. 3, pp. 421–441, 2001.
[23] G. Singh, P. T. Kabamba, and N. H. Mcclamroch, “Planar, time-optimal, rest-to-rest slewing maneuvers of flexible spacecraft,” J. Guid. Control Dyn., vol. 12, no. 1, pp. 57–65, 1989.
[24] T. Yamashita, N. Ogura, T. Kurii, and T. Hashimoto, “Improved satellite attitude control using a disturbance compensator,” Acta Astronaut., vol. 55, no. 1, pp. 15–25, 2004.
[25] H. Liu, L. Guo, and Y. Zhang, “An anti-disturbance PD control scheme for attitude control and stabilization of flexible spacecrafts,” Nonlinear Dyn., vol. 67, no. 3, pp. 2081–2088, 2012.
[26] J. Erdong and S. Zhaowei, “Passivity-based control for a flexible spacecraft in the presence of disturbances,” Int. J. Non. Linear. Mech., vol. 45, no. 4, pp. 348–356, 2010.
[27] Q. Hu and B. Xiao, “Intelligent proportional-derivative control for flexible spacecraft attitude stabilization with unknown input saturation,” Aerosp. Sci. Technol., vol. 23, no. 1, pp. 63–74, 2012.
[28] Q. Hu, “Semi-globally input-to-state stable controller design for flexible spacecraft attitude stabilization under bounded disturbances,” Acta Astronaut., vol. 66, no. 3–4, pp. 567–576, 2010.
[29] B. Baghi, M. Kabganian, R. Nadafi, and E. Arabi, “Three-axis attitude stabilization of a flexible satellite using non-linear PD controller,” Trans. Inst. Meas. Control, vol. 40, no. 2, pp. 591–605, 2018.
[30] Dong Ye and Zhaowei Sun, “Variable structure tracking control for flexible spacecraft,” Aircr. Eng. Aerosp. Technol., vol. 88, no. 4, pp. 508–514, 2016.
[31] J. W. Bachelor, “Nonlinear Attitude Control for a 6U CubeSat with a Flexible, Deployable Boom,” M.S. Thesis, Mechanical Engineering, Florida Institute of Technology, 2020.
[32] A. Stolfi, P. Gasbarri, and M. Sabatini, “A parametric analysis of a controlled deployable space manipulator for capturing a non-cooperative flexible satellite,” Acta Astronaut., vol. 148, no. January, pp. 317–326, 2018.
[33] Qinglei Hu and Guangfu Ma, “Vibration Suppression of Flexible Spacecraft During Attitude Maneuvers,” J. Guid. Control Dyn., vol. 8, no. 2, pp. 377–380, 2005.
[34] J. E. Benmansour, B. Khouane, and R. Roubache, “Vibration suppression for flexible satellite during attitude stabilization,” in Proceedings of 2018 3rd International Conference on Electrical Sciences and Technologies in Maghreb, CISTEM 2018, 2019, pp. 1–4.
[35] J. E. Benmansour, M. A. Si Mohammed, and A. Bellar, “Extended state observer based control of attitude stabilization for flexible spacecraft with solar pressure and slosh disturbances,” in 2017 5th International Conference on Electrical Engineering - Boumerdes, ICEE-B 2017, 2017, pp. 1–6.
[36] M. Damircheli, M. Fakoor, and H. Yadegari, “Failure assessment logic model (FALM): A new approach for reliability analysis of satellite attitude control subsystem,” Reliab. Eng. Syst. Saf., vol. 198, p. 106889, 2020.
[37] T. P. Sales, D. A. Rade, and L. C. G. De Souza, “Passive vibration control of flexible spacecraft using shunted piezoelectric transducers,” Aerosp. Sci. Technol., vol. 29, no. 1, pp. 403–412, 2013.
[38] Y. Xiao, A. H. J. de Ruiter, D. Ye, and Z. Sun, “Attitude tracking control for rigid-flexible coupled spacecraft with guaranteed performance bounds,” J. Guid. Control. Dyn., vol. 43, no. 2, pp. 327–337, 2020.
[39] E. Wang, S. Wu, Y. Liu, Z. Wu, and X. Liu, “Distributed vibration control of a large solar power satellite,” Astrodynamics, vol. 3, no. 2, pp. 189–203, 2019.
[40] A. Agarwal and A, “Proportional-Dervative-Acceleration Feedback Controller Design For Single Axis Attitude Control of Rigid Spacecraft with Flexible Appendages,” M.S. thesis, Earth and Space Science, York University, 2018.
[41] I. M. da Fonseca, D. A. Rade, L. C. S. Goes, and T. de Paula Sales, “Attitude and vibration control of a satellite containing flexible solar arrays by using reaction wheels, and piezoelectric transducers as sensors and actuators,” Acta Astronaut., vol. 139, pp. 357–366, 2017.
[42] C. Pukdeboon, “Robust optimal pid controller design for attitude stabilization of flexible spacecraft,” Kybernetika, vol. 54, no. 5, pp. 1049–1070, 2018.
[43] Y. Li and D. Ye, “Robust PID controller for flexible satellite attitude control under angular velocity and control torque constraint,” Asian J. Control, vol. 22, no. 3, pp. 1327–1344, 2020.
[44] A. Colagrossi and M. Lavagna, “Integrated vibration suppression attitude control for flexible spacecrafts with internal liquid sloshing,” Multibody Syst. Dyn., 2020.
[45] C. Zhong,  yu Guo, Z. yu,  lu Wang, and Q. Chen, “Finite-time attitude control for flexible spacecraft with unknown bounded disturbance,” Trans. Inst. Meas. Control, vol. 38, no. 2, pp. 240–249, 2016.
[46] L. Chen, Y. Yan, C. Mu, and C. Sun, “Characteristic model-based discrete-time sliding mode control for spacecraft with variable tilt of flexible structures,” IEEE/CAA J. Autom. Sin., vol. 3, no. 1, pp. 42–50, 2016.
[47] Y. Geng, C. Li, Y. Sun, and J. Ma, “Adaptive sliding mode attitude tracking control for flexible spacecraft,” in Proceedings - 2016 6th International Conference on Instrumentation and Measurement, Computer, Communication and Control, 2016, pp. 400–404.
[48] B. Khouane, C. Han, and Y. Zhu, “Disturbance observer based composite attitude stabilization of flexible spacecraft,” in CGNCC 2016 - 2016 IEEE Chinese Guidance, Navigation and Control Conference, 2017, pp. 2225–2230.
[49] M. Deng and B. Yue, “Attitude tracking control of flexible spacecraft with large amplitude slosh,” Acta Mech. Sin. Xuebao, vol. 33, no. 6, pp. 1095–1102, 2017.
[50] Y. Xiao, D. Ye, and Z. Sun, “Finite time fault-tolerant attitude control for rigid-flexible coupling satellites based on Legendre neural network,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., vol. 232, no. 15, pp. 2845–2857, 2018.
[51] M. Malekzade, “Active Vibration Suppression of a Nonlinear Flexible Spacecraft,” J. Aerosp. Sci. Technol., vol. 11, no. 1, pp. 35–46, 2017.
[52] S. Xu, N. Cui, Y. Fan, and Y. Guan, “Flexible satellite attitude maneuver via adaptive sliding mode control and active vibration suppression,” AIAA J., vol. 56, no. 10, pp. 4205–4212, 2018.
[53] Y. Xiao, D. Ye, and Z. Sun, “Observer-based continuous finite-time attitude control for rigid–flexible coupling satellites,” Int. J. Control, vol. 92, no. 11, pp. 2667–2680, 2019.
[54] C. Ton and C. Petersen, “Continuous Fixed-Time Sliding Mode Control for Spacecraft with Flexible Appendages,” in IFAC-PapersOnLine, 2018, vol. 51, no. 12, pp. 1–5.
[55] H. Yadegari, B. Khouane, Z. Yukai, and H. Chao, “Disturbance observer based anti-disturbance fault tolerant control for flexible satellites,” Adv. Aircr. Spacecr. Sci., vol. 5, no. 4, pp. 459–475, 2018.
[56] R. Q. Dong, X. Dong, A. G. Wu, and Y. Zhang, “Dynamic Sliding Mode Attitude Tracking Control for Flexible Spacecraft,” in IEEE International Symposium on Industrial Electronics, 2019, pp. 509–514.
[57] M. Sabatini, G. B. Palmerini, and P. Gasbarri, “Synergetic approach in attitude control of very flexible satellites by means of thrusters and PZT devices,” Aerosp. Sci. Technol., vol. 96, p. 105541, 2020.
[58] R. Nadafi, M. Kabganian, A. Kamali, and M. Hossein Nejad, “Super-twisting sliding mode control design based on Lyapunov criteria for attitude tracking control and vibration suppression of a flexible spacecraft,” Meas. Control (United Kingdom), vol. 52, no. 7–8, pp. 814–831, 2019.
[59] A. Li, M. Liu, and Y. Shi, “Adaptive sliding mode attitude tracking control for flexible spacecraft systems based on the Takagi-Sugeno fuzzy modelling method,” Acta Astronaut., vol. 175, no. May, pp. 570–581, 2020.
[60] J. Tao, T. Zhang, Y. Wang, and S. Tan, “Robust maneuver control and vibration suppression of flexible spacecraft with unknown disturbance and uncertainty,” in Chinese Control Conference, CCC, 2017, pp. 4730–4735.
[61] N. Ji and J. Liu, “Vibration control for a flexible satellite with input constraint based on Nussbaum function via backstepping method,” Aerosp. Sci. Technol., vol. 77, pp. 563–572, 2018.
[62] L. Huang and Z. Wu, “Extended harmonic disturbance observer-based attitude control for flexible spacecraft with control moment gyroscopes,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., vol. 233, no. 14, pp. 5331–5346, 2019.
[63] Y. Miao, F. Wang, and M. Liu, “Anti-Disturbance Backstepping Attitude Control for Rigid-Flexible Coupling Spacecraft,” IEEE Access, vol. 6, pp. 50729–50736, 2018.
[64] L. Shuhao and L. Zheng, “Frequency Shaping Backstepping Robust Attitude Maneuver of Flexible Spacecraft,” in 2018 IEEE International Conference on Mechatronics, Robotics and Automation, ICMRA 2018, 2018, pp. 42–46.
[65] J. Ma, H. Wen, and D. Jin, “PDE model-based boundary control of a spacecraft with double flexible appendages under prescribed performance,” Adv. Sp. Res., vol. 65, no. 1, pp. 586–597, 2020.
[66] Y. Fu, Y. Liu, and D. Huang, “Boundary output feedback control of a flexible spacecraft system with input constraint,” IET Control Theory Appl., vol. 12, no. 5, pp. 571–581, 2018.
[67] H. K. Rad, H. Salarieh, A. Alasty, and R. Vatankhah, “Boundary control of anti-symmetric vibration of satellite with flexible appendages in planar motion with exponential stability,” Acta Astronaut., vol. 147, pp. 219–230, 2018.
[68] Y. C. Chak, R. Varatharajoo, and Y. Razoumny, “Disturbance observer-based fuzzy control for flexible spacecraft combined attitude & sun tracking system,” Acta Astronaut., vol. 133, pp. 302–310, 2017.
[69] J. Qiao, H. Wu, and X. Yu, “High-Precision Attitude Tracking Control of Space Manipulator System Under Multiple Disturbances,” IEEE Trans. Syst. Man, Cybern. Syst., vol. PP, pp. 1–11, 2019.
[70] Q. Zhang, D. Meng, X. Wang, B. Liang, and W. Lu, “Learning to control space robots with flexible appendages using model-based policy search,” 2017 IEEE Int. Conf. Robot. Biomimetics, ROBIO 2017, vol. 2018-Janua, no. 61673239, pp. 1395–1400, 2018.
[71] F. Angeletti, A. Stolfi, and P. Gasbarri, “Learning-based Control of a Spacecraft with Sloshing Propellant,” Aerotec. Missili Spaz., vol. 99, no. 1, pp. 33–42, 2020.
[72] M. Chegini, H. Sadati, and H. Salarieh, “Chaos analysis in attitude dynamics of a flexible satellite,” Nonlinear Dyn., vol. 93, no. 3, pp. 1421–1438, 2018.
[73] Y. Yang, X. Zheng, and W. Jing, “Adaptive attitude control of liquid-filled spacecraft with flexible appendages,” in Chinese Control Conference, 2016, pp. 10543–10547.
[74] D. I. Gransden and E. Mooij, “Simple adaptive control of a satellite with large flexible appendages,” in Proceedings of the International Astronautical Congress, IAC, 2016, no. September.
[75] P. Zarafshan, S. A. A. Moosavian, and E. G. Papadopoulos, “Adaptive hybrid suppression control of space free-flying robots with flexible appendages,” Robotica, vol. 34, no. 1, pp. 1464–1485, 2016.
[76] L. Wang, Y. Guo, W. Yao, Q. Chen, and A. A. Kinematics, “Adaptive Robust Attitude Control for Flexible Spacecraft with Control Moment Gyroscopes,” in 12th World Congress on Intelligent Control and Automation (WCICA), 2016, pp. 2376–2381.
[77] C. Zhong, L. Wu, J. Guo, Y. Guo, and Z. Chen, “Robust adaptive attitude manoeuvre control with finite-time convergence for a flexible spacecraft,” Trans. Inst. Meas. Control, vol. 40, no. 2, 2016.
[78] S. Wu, Y. Liu, G. Radice, and S. Tan, “Autonomous pointing control of a large satellite antenna subject to parametric uncertainty,” Sensors (Switzerland), vol. 17, no. 3, 2017.
[79] K. W. Lee and S. N. Singh, “Attitude stabilization of spacecraft with flexible appendages by L1 adaptive feedback,” in Proceedings - 25th International Conference on Systems Engineering, ICSEng 2017, 2017, vol. 2017-Janua, pp. 3–10.
[80] C. Pukdeboon and A. Jitpattanakul, “Anti-Unwinding Attitude Control with Fixed-Time Convergence for a Flexible Spacecraft,” Int. J. Aerosp. Eng., vol. 2017, 2017.
[81] C. Wei, J. Luo, H. Dai, and J. Yuan, “Adaptive model-free constrained control of postcapture flexible spacecraft: a Euler–Lagrange approach,” JVC/Journal Vib. Control, vol. 24, no. 20, pp. 4885–4903, 2018.
[82] E. Mooij and D. I. Gransden, “Model verification of a satellite with large flexible appendages for control system design,” in Space Flight Mechanics Meeting, 2018, 2018, no. 210009, pp. 1–24.
[83] Y. Fu, Y. Liu, and D. Huang, “Adaptive boundary control and vibration suppression of a flexible satellite system with input saturation,” Trans. Inst. Meas. Control, vol. 41, no. 9, pp. 2666–2677, 2019.
[84] D. I. Gransden and E. Mooijy, “Control recovery of a satellite with flexible appendages after space debris impact,” in AIAA Guidance, Navigation, and Control Conference, 2018, 2018, no. 210039, pp. 1–20.
[85] T. Chen, J. Shan, and H. Wen, “Distributed adaptive attitude control for networked underactuated flexible spacecraft,” IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 1, pp. 215–225, 2019.
[86] J. Tao, T. Zhang, and Y. Nie, “Attitude Maneuvering and Vibration Reducing Control of Flexible Spacecraft Subject to Actuator Saturation and Misalignment,” Shock Vib., vol. 2018, 2018.
[87] J. Wang and D. Li, “Experiments study on attitude coupling control method for flexible spacecraft,” Acta Astronaut., vol. 147, pp. 393–402, 2018.
[88] H. MoradiMaryamnegari and A. M. Khoshnood, “Robust adaptive vibration control of an underactuated flexible spacecraft,” JVC/Journal Vib. Control, vol. 25, no. 4, pp. 834–850, 2019.
[89] N. Ji and J. Liu, “Vibration control for a flexible satellite with adaptive actuator fault-tolerant and input quantization,” Trans. Inst. Meas. Control, vol. 42, no. 3, pp. 451–460, 2020.
[90] R. Q. Dong, Y. Y. Wu, Y. Zhang, and A. G. Wu, “Adaptive Backstepping Attitude Control Law with L2 -Gain Performance for Flexible Spacecraft,” Int. J. Aerosp. Eng., vol. 2019, 2019.
[91] Z. Lin, S. Lin, S. Wu, G. Ma, and Z. Liang, “Vibration control of a flexible spacecraft system with input backlash,” IEEE Access, vol. 7, pp. 87017–87026, 2019.
[92] Z. Ni, J. Liu, S. Wu, and Z. Wu, “Time-varying state-space model identification of onorbit rigid-flexible coupling spacecraft using a predictor-based recursive subspace algorithm,” Adv. Astronaut. Sci., vol. 165, no. 2, pp. 981–994, 2018.
[93] C. Zhang, G. Ma, Y. Sun, and C. Li, “Prescribed performance adaptive attitude tracking control for flexible spacecraft with active vibration suppression,” Nonlinear Dyn., 2019.
[94] M. Azimi and M. Shahravi, “Stabilization of a large flexible spacecraft using robust adaptive sliding hypersurface and finite element approach,” Int. J. Dyn. Control, vol. 8, no. 2, pp. 644–655, 2020.
[95] G. Yang, Y. Liu, M. Jin, and H. Liu, “A Robust and Adaptive Control Method for Flexible-Joint Manipulator Capturing a Tumbling Satellite,” IEEE Access, vol. 7, pp. 159971–159985, 2019.
[96] N. Ji, H. Yang, and J. Liu, “Coordination and vibration control for two sets of flexible satellites with input constraints and actuator failures,” JVC/Journal Vib. Control, no. 37, 2020.
[97] S. Cao and B. Hang, “Adaptive fault tolerant attitude control of flexible satellites based on Takagi-Sugeno fuzzy disturbance modeling,” Trans. Inst. Meas. Control, vol. 42, no. 9, pp. 1712–1723, 2020, doi: 10.1177/0142331219895108.
[98] N. Ji and J. Liu, “Distributed vibration control for flexible spacecraft with distributed disturbance and actuator fault,” J. Sound Vib., vol. 475, p. 115274, 2020, doi: 10.1016/j.jsv.2020.115274.
[99] K. W. Lee and S. N. Singh, “Passification-Based Adaptive Control of Spacecraft with Elastic Appendages,” in American Institute of Aeronautics and Astronautics AIAA Scitech, 2020, no. January, pp. 1–16, doi: 10.2514/6.2020-1104.
[100] P. Zhang, J. Qiao, L. Guo, and W. Li, “Sliding mode friction observer based control for flexible spacecraft with reaction wheel,” IET Control Theory Appl., vol. 11, no. 8, pp. 1274–1281, 2016, doi: 10.1049/iet-cta.2016.0802.
[101] Z. H. and M. J. Hu Xiaoxiao, “Robust Two-degree-of-Freedom Control for Flexible Spacecraft,” 2016.
[102] S. Wu and S. Wen, “Robust H∞ output feedback control for attitude stabilization of a flexible spacecraft,” Nonlinear Dyn., vol. 84, no. 1, pp. 405–412, 2016, doi: 10.1007/s11071-016-2624-5.
[103] H. Bai, Y. Zhou, H. Sun, and J. Zeng, “Observer-based non-linear H∞ attitude control for a flexible satellite,” IET Control Theory Appl., vol. 11, no. 15, pp. 2403–2411, 2017, doi: 10.1049/iet-cta.2017.0129.
[104] H. Long and J. Zhao, “Robust constrained fault-tolerant attitude control for flexible spacecraft,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., vol. 232, no. 16, pp. 3011–3023, 2018, doi: 10.1177/0954410017733291.
[105] C. Liu, D. Ye, K. Shi, and Z. Sun, “Robust high-precision attitude control for flexible spacecraft with improved mixed H2/H∞ control strategy under poles assignment constraint,” Acta Astronaut., vol. 136, pp. 166–175, 2017, doi: 10.1016/j.actaastro.2017.03.009.
[106] D. Ye and Y. Xiao, “Robust output feedback attitude tracking control for rigid-flexible coupling spacecraft,” J. Franklin Inst., vol. 355, no. 18, pp. 9209–9223, 2018, doi: 10.1016/j.jfranklin.2017.02.031.
[107] Q. Hu, C. Guo, and J. Zhang, “Singularity and steering logic for control moment gyros on flexible space structures,” Acta Astronaut., vol. 137, pp. 261–273, 2017, doi: 10.1016/j.actaastro.2017.04.030.
[108] S. Wu, W. Chu, X. Ma, G. Radice, and Z. Wu, “Multi-objective integrated robust H∞ control for attitude tracking of a flexible spacecraft,” Acta Astronaut., vol. 151, pp. 80–87, 2018, doi: 10.1016/j.actaastro.2018.05.062.
[109] S. M. Amrr, M. U. Nabi, and A. Iqbal, “An Event-Triggered Robust Attitude Control of Flexible Spacecraft With Modified Rodrigues Parameters Under Limited Communication,” IEEE Access, vol. 7, pp. 93198–93211, 2019, doi: 10.1109/ACCESS.2019.2927616.
[110] J. QIAO, X. LI, and J. XU, “A composite disturbance observer and H∞ control scheme for flexible spacecraft with measurement delay and input delay,” Chinese J. Aeronaut., vol. 32, no. 6, pp. 1472–1480, 2019, doi: 10.1016/j.cja.2018.10.013.
[111] Y. Zhou, Y. Yang, X. Zheng, and R. Fu, “Nonlinear dynamic observer design of flexible satellite attitude maneuver: A sum-of-squares approach,” in Chinese Control Conference, CCC, 2019, vol. 2019-July, pp. 161–167, doi: 10.23919/ChiCC.2019.8866055.
[112] A. G. Souza and L. C. G. Souza, “Design of a controller for a rigid-flexible satellite using the H-infinity method considering the parametric uncertainty,” Mech. Syst. Signal Process., vol. 116, pp. 641–650, 2019, doi: 10.1016/j.ymssp.2018.07.002.
[113] C. Liu, X. Yue, K. Shi, and Z. Sun, “Inertia-free attitude stabilization for flexible spacecraft with active vibration suppression,” Int. J. Robust Nonlinear Control, vol. 29, no. 18, pp. 6311–6336, 2019, doi: 10.1002/rnc.4742.
[114] L. Fan, H. Huang, L. Sun, and K. Zhou, “Robust attitude control for a rigid-flexible-rigid microsatellite with multiple uncertainties and input saturations,” Aerosp. Sci. Technol., vol. 95, p. 105443, 2019.
[115] J. Sun, S. Li, J. Huang, and D. Zhu, “Robust coordinated control for large flexible spacecraft based on consensus theory,” J. Franklin Inst., vol. 357, no. 9, pp. 5359–5379, 2020, doi: 10.1016/j.jfranklin.2020.02.049.
[116] J. Wang, J. Wu, W. Liu, and H. Ji, “Coupling Attitude Control for Flexible Spacecraft with Rotating Structure,” in 4th International Conference on Robotics and Automation Sciences, 2020, pp. 67–71, doi: 10.1109/icras49812.2020.9135069.
[117] S. W. Liu and T. Singh, “Robust time-optimal control of flexible structures with parametric uncertainty,” J. Dyn. Syst. Meas. Control. Trans. ASME, vol. 119, no. 4, pp. 743–748, 1997, doi: 10.1115/1.2802386.
[118] J. Wang, D. Li, and J. Jiang, “Optimal variable amplitudes input shaping control for slew maneuver of flexible spacecraft,” J. Guid. Control. Dyn., vol. 40, no. 12, pp. 3255–3263, 2017, doi: 10.2514/1.G002838.
[119] B. Yang, Z. Fan, J. Miao, J. Long, and X. Liu, “Active Vibration Control of Flexible Satellites Using Solid Propellant Microthruster Array,” J. Aerosp. Eng., vol. 31, no. 2, pp. 1–12, 2018.
[120] M. Azimi and G. Sharifi, “A hybrid control scheme for attitude and vibration suppression of a flexible spacecraft using energy-based actuators switching mechanism,” Aerosp. Sci. Technol., vol. 82–83, no. September, pp. 140–148, 2018, doi: 10.1016/j.ast.2018.09.010.
[121] S. K. Singh, E. Taheri, and J. L. Junkins, “A hybrid optimal control method for time-optimal slewing maneuvers of flexible spacecraft,” Adv. Astronaut. Sci., vol. 167, pp. 2659–2678, 2018.
[122] Z. Hou, Y. Geng, and S. Huang, “Minimum Residual Vibrations for Flexible Satellites with Frequency Uncertainty,” IEEE Trans. Aerosp. Electron. Syst., vol. 54, no. 2, pp. 1029–1038, 2018, doi: 10.1109/TAES.2017.2773321.
[123] D. Ivanov et al., “Coupled motion determination and stabilization of a satellite equipped with large flexible elements using ADCs only,” Proc. Int. Astronaut. Congr. IAC, vol. 2019-Octob, no. October, pp. 21–25, 2019.
[124] L. Liu and Y. Guo, “Multi-objective optimization for attitude maneuver of liquid-filled flexible spacecraft based on improved hierarchical optimization algorithm,” Appl. Soft Comput. J., vol. 96, p. 106598, 2020, doi: 10.1016/j.asoc.2020.106598.
[125]    H. Bang and C. S. Oh, “Predictive control for the attitude maneuver of a flexible spacecraft,” Aerosp. Sci. Technol., vol. 8, no. 5, pp. 443–452, 2004.
[126] R. A. McCourt and C. W. de Silva, “Autonomous robotic capture of a satellite using constrained predictive control,” IEEE/ASME Trans. Mechatronics, vol. 11, no. 6, pp. 699–708, 2006.
[127] T. Asakawa and T. Kida, “Model predictive control for LPV system using on-off actuator with application to spacecraft attitude maneuver,” in IEEE International Conference on Control and Automation, ICCA, 2014, pp. 1215–1220.
[128] M. TayyebTaher and S. M. Esmaeilzadeh, “Model predictive control of attitude maneuver of a geostationary flexible satellite based on genetic algorithm,” Adv. Sp. Res., vol. 60, no. 1, pp. 57–64, 2017.
[129] S. Di Cairano and I. V. Kolmanovsky, “Real-time optimization and model predictive control for aerospace and automotive applications,” in Proceedings of the American Control Conference, 2018, vol. 2018-June, pp. 2392–2409.
[130] J. Huo, T. Meng, R. Song, and Z. Jin, “Adaptive prediction backstepping attitude control for liquid-filled micro-satellite with flexible appendages,” Acta Astronaut., vol. 152, no. 1, pp. 557–566, 2018.
[131] A. Murilo, “Fast Model Predictive Control Scheme for Attitude Control Systems of Rigid-Flexible Satellite,” 2019.
[132] K. Tracy and Z. Manchester, “Model Predictive Attitude Control for Flexible Spacecraft During Thruster Firings,” in AAS/AIAA Astrodynamics Specialist Conference, 2020, pp. 1–14.
[133] R. L. Sutherland, I. V. Kolmanovsky, A. R. Girard, F. A. Leve, and C. D. Petersen, “Minimum-time model predictive spacecraft attitude control for waypoint following and exclusion zone avoidance,” in AIAA Scitech 2019 Forum, 2019, no. January, pp. 1–15.
[134] C. D. and Z. J. Shengchao Deng, Tao Meng, Hao Wang, “Flexible Robot Manipulators: Modelling, Simulation and Control,” Acta Astronaut., 2016.
[135]  K. H. Ang, G. Chong and Y. Li, “PID control system analysis, design, and technology,” IEEE Transaction on Control System, Vol. 13, no.4, pp. 559–576, 2005.
[136]. Lochan, K., Roy, B., & Subudhi, B. “A review on two-link flexible manipulators”, Annual Reviews in Control, Vol. 42, pp. 346-367, 2016.
[137]. J. Kim, S. A. Gadsden and S. A. Wilkerson, “A Comprehensive Survey of Control Strategies for Autonomous Quadrotors,” Canadian Journal of Electrical and Computer Engineering, vol. 43, no. 1, pp. 3-16, 20